OCR Further Mechanics AS 2023 June — Question 6

Exam BoardOCR
ModuleFurther Mechanics AS (Further Mechanics AS)
Year2023
SessionJune
TopicDimensional Analysis

6 The physical quantity pressure, denoted by \(P\), can be calculated using the formula \(P = \frac { F } { A }\) where \(F\) is a force and \(A\) is an area.
  1. Find the dimensions of \(P\). An object of mass \(m\) is moving on a smooth horizontal surface subject to a system of forces which begin to act at time \(t = 0\). The initial velocity of the object is \(u\) and its velocity and acceleration at time \(t\) are denoted by \(v\) and \(a\) respectively. The object exerts a pressure \(P\) on the surface. The total work done by the forces is denoted by \(W\). A Mathematics class suggests three formulae to model the quantity \(W\).
    The first suggested formula is \(W = \frac { 1 } { 2 } m v ^ { 2 } - \frac { 1 } { 2 } m u ^ { 2 } + m P\).
  2. Use dimensional analysis to show that this formula cannot be correct. The second suggested formula is \(W = k u ^ { \alpha } v ^ { \beta } t ^ { \gamma }\) where \(k\) is a dimensionless constant.
  3. Use dimensional analysis to show that this formula cannot be correct for any values of \(\alpha , \beta\) and \(\gamma\). The third suggested formula is \(W = k u ^ { \alpha } a ^ { \beta } m ^ { \gamma } t ^ { \delta }\) where \(k\) is a dimensionless constant.
    1. Explain why it is not possible to use dimensional analysis to determine the values of \(\alpha\), \(\beta , \gamma\) and \(\delta\) for the third suggested formula.
    2. Given that \(\alpha = 3\), use dimensional analysis to determine the values of \(\beta , \gamma\) and \(\delta\) for the third suggested formula.
    3. By considering what the formula predicts for large values of \(t\), explain why the formula derived in part (d)(ii) is likely to be incorrect.