2 A particle \(P\) of mass 0.4 kg is attached to one end of a light inextensible string of length 1.8 m . The other end of the string is attached to a fixed point, \(O\), on a smooth horizontal plane. Initially, \(P\) is moving with a constant speed of \(12 \mathrm {~ms} ^ { - 1 }\) in a horizontal circle with \(O\) as its centre.
- Find the magnitude of the acceleration of \(P\).
- State the direction of the acceleration of \(P\).
A force is now applied to \(P\) in such a way that its angular velocity increases. At the instant that the angular velocity reaches \(8 \mathrm { rad } \mathrm { s } ^ { - 1 }\), the string breaks.
- Find the speed with which \(P\) is moving at the instant that the string breaks.
- Find the tension in the string at the instant that the string breaks.
After the string has broken \(P\) starts to move directly up a smooth slope which is fixed to the plane and inclined at an angle \(\theta ^ { \circ }\) above the horizontal. Particle \(P\) moves a distance of 20 m up the slope before coming to instantaneous rest.
- Use an energy method to determine the value of \(\theta\).