Questions — OCR M1 (141 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR M1 2009 January Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{470e70de-66ba-4dcc-a205-0c92f29471b1-4_227_901_1352_623} Two particles \(P\) and \(Q\) have masses 0.7 kg and 0.3 kg respectively. \(P\) and \(Q\) are simultaneously projected towards each other in the same straight line on a horizontal surface with initial speeds of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively (see diagram). Before \(P\) and \(Q\) collide the only horizontal force acting on each particle is friction and each particle decelerates at \(0.4 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). The particles coalesce when they collide.
  1. Given that \(P\) and \(Q\) collide 2 s after projection, calculate the speed of each particle immediately before the collision, and the speed of the combined particle immediately after the collision.
  2. Given instead that \(P\) and \(Q\) collide 3 s after projection,
    (a) sketch on a single diagram the \(( t , v )\) graphs for the two particles in the interval \(0 \leqslant t < 3\),
    (b) calculate the distance between the two particles at the instant when they are projected.
OCR M1 2005 June Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{99d30766-9c1b-43a8-986a-112b78b08146-2_508_501_274_822} A light inextensible string has its ends attached to two fixed points \(A\) and \(B\). The point \(A\) is vertically above \(B\). A smooth ring \(R\) of mass \(m \mathrm {~kg}\) is threaded on the string and is pulled by a force of magnitude 1.6 N acting upwards at \(45 ^ { \circ }\) to the horizontal. The section \(A R\) of the string makes an angle of \(30 ^ { \circ }\) with the downward vertical and the section \(B R\) is horizontal (see diagram). The ring is in equilibrium with the string taut.
  1. Give a reason why the tension in the part \(A R\) of the string is the same as that in the part \(B R\).
  2. Show that the tension in the string is 0.754 N , correct to 3 significant figures.
  3. Find the value of \(m\).
OCR M1 2005 June Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{99d30766-9c1b-43a8-986a-112b78b08146-2_643_289_1475_927} Particles \(A\) and \(B\), of masses 0.2 kg and 0.3 kg respectively, are attached to the ends of a light inextensible string. Particle \(A\) is held at rest at a fixed point and \(B\) hangs vertically below \(A\). Particle \(A\) is now released. As the particles fall the air resistance acting on \(A\) is 0.4 N and the air resistance acting on \(B\) is 0.25 N (see diagram). The downward acceleration of each of the particles is \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\) and the tension in the string is \(T \mathrm {~N}\).
  1. Write down two equations in \(a\) and \(T\) obtained by applying Newton's second law to \(A\) and to \(B\).
  2. Find the values of \(a\) and \(T\).
OCR M1 2005 June Q3
3 Two small spheres \(P\) and \(Q\) have masses 0.1 kg and 0.2 kg respectively. The spheres are moving directly towards each other on a horizontal plane and collide. Immediately before the collision \(P\) has speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(Q\) has speed \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Immediately after the collision the spheres move away from each other, \(P\) with speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(Q\) with speed \(( 3.5 - u ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  1. Find the value of \(u\). After the collision the spheres both move with deceleration of magnitude \(5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) until they come to rest on the plane.
  2. Find the distance \(P Q\) when both \(P\) and \(Q\) are at rest.
OCR M1 2005 June Q4
4 A particle moves downwards on a smooth plane inclined at an angle \(\alpha\) to the horizontal. The particle passes through the point \(P\) with speed \(u \mathrm {~ms} ^ { - 1 }\). The particle travels 2 m during the first 0.8 s after passing through \(P\), then a further 6 m in the next 1.2 s . Find
  1. the value of \(u\) and the acceleration of the particle,
  2. the value of \(\alpha\) in degrees.
OCR M1 2005 June Q5
5
\includegraphics[max width=\textwidth, alt={}, center]{99d30766-9c1b-43a8-986a-112b78b08146-3_697_579_1238_781} Two small rings \(A\) and \(B\) are attached to opposite ends of a light inextensible string. The rings are threaded on a rough wire which is fixed vertically. \(A\) is above \(B\). A horizontal force is applied to a point \(P\) of the string. Both parts \(A P\) and \(B P\) of the string are taut. The system is in equilibrium with angle \(B A P = \alpha\) and angle \(A B P = \beta\) (see diagram). The weight of \(A\) is 2 N and the tensions in the parts \(A P\) and \(B P\) of the string are 7 N and \(T \mathrm {~N}\) respectively. It is given that \(\cos \alpha = 0.28\) and \(\sin \alpha = 0.96\), and that \(A\) is in limiting equilibrium.
  1. Find the coefficient of friction between the wire and the ring \(A\).
  2. By considering the forces acting at \(P\), show that \(T \cos \beta = 1.96\).
  3. Given that there is no frictional force acting on \(B\), find the mass of \(B\).
OCR M1 2005 June Q6
6 A particle of mass 0.04 kg is acted on by a force of magnitude \(P \mathrm {~N}\) in a direction at an angle \(\alpha\) to the upward vertical.
  1. The resultant of the weight of the particle and the force applied to the particle acts horizontally. Given that \(\alpha = 20 ^ { \circ }\) find
    (a) the value of \(P\),
    (b) the magnitude of the resultant,
    (c) the magnitude of the acceleration of the particle.
  2. It is given instead that \(P = 0.08\) and \(\alpha = 90 ^ { \circ }\). Find the magnitude and direction of the resultant force on the particle.
OCR M1 2005 June Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{99d30766-9c1b-43a8-986a-112b78b08146-4_634_1127_934_507} A car \(P\) starts from rest and travels along a straight road for 600 s . The \(( t , v )\) graph for the journey is shown in the diagram. This graph consists of three straight line segments. Find
  1. the distance travelled by \(P\),
  2. the deceleration of \(P\) during the interval \(500 < t < 600\). Another car \(Q\) starts from rest at the same instant as \(P\) and travels in the same direction along the same road for 600 s . At time \(t \mathrm {~s}\) after starting the velocity of \(Q\) is \(\left( 600 t ^ { 2 } - t ^ { 3 } \right) \times 10 ^ { - 6 } \mathrm {~ms} ^ { - 1 }\).
  3. Find an expression in terms of \(t\) for the acceleration of \(Q\).
  4. Find how much less \(Q\) 's deceleration is than \(P\) 's when \(t = 550\).
  5. Show that \(Q\) has its maximum velocity when \(t = 400\).
  6. Find how much further \(Q\) has travelled than \(P\) when \(t = 400\).
OCR M1 2006 June Q1
1 Each of two wagons has an unloaded mass of 1200 kg . One of the wagons carries a load of mass \(m \mathrm {~kg}\) and the other wagon is unloaded. The wagons are moving towards each other on the same rails, each with speed \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), when they collide. Immediately after the collision the loaded wagon is at rest and the speed of the unloaded wagon is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find the value of \(m\).
OCR M1 2006 June Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{8ee41313-b516-48cb-bc87-cd8e54245d28-2_620_711_543_717} Forces of magnitudes 6.5 N and 2.5 N act at a point in the directions shown. The resultant of the two forces has magnitude \(R \mathrm {~N}\) and acts at right angles to the force of magnitude 2.5 N (see diagram).
  1. Show that \(\theta = 22.6 ^ { \circ }\), correct to 3 significant figures.
  2. Find the value of \(R\).
OCR M1 2006 June Q3
3 A man travels 360 m along a straight road. He walks for the first 120 m at \(1.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), runs the next 180 m at \(4.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), and then walks the final 60 m at \(1.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The man's displacement from his starting point after \(t\) seconds is \(x\) metres.
  1. Sketch the \(( t , x )\) graph for the journey, showing the values of \(t\) for which \(x = 120,300\) and 360 . A woman jogs the same 360 m route at constant speed, starting at the same instant as the man and finishing at the same instant as the man.
  2. Draw a dotted line on your ( \(t , x\) ) graph to represent the woman's journey.
  3. Calculate the value of \(t\) at which the man overtakes the woman.
OCR M1 2006 June Q4
4 A cyclist travels along a straight road. Her velocity \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), at time \(t\) seconds after starting from a point \(O\), is given by $$\begin{aligned} & v = 2 \quad \text { for } 0 \leqslant t \leqslant 10
& v = 0.03 t ^ { 2 } - 0.3 t + 2 \quad \text { for } t \geqslant 10 . \end{aligned}$$
  1. Find the displacement of the cyclist from \(O\) when \(t = 10\).
  2. Show that, for \(t \geqslant 10\), the displacement of the cyclist from \(O\) is given by the expression \(0.01 t ^ { 3 } - 0.15 t ^ { 2 } + 2 t + 5\).
  3. Find the time when the acceleration of the cyclist is \(0.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Hence find the displacement of the cyclist from \(O\) when her acceleration is \(0.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
OCR M1 2006 June Q5
5 A block of mass \(m \mathrm {~kg}\) is at rest on a horizontal plane. The coefficient of friction between the block and the plane is 0.2 .
  1. When a horizontal force of magnitude 5 N acts on the block, the block is on the point of slipping. Find the value of \(m\).

  2. \includegraphics[max width=\textwidth, alt={}, center]{8ee41313-b516-48cb-bc87-cd8e54245d28-3_312_711_1244_758} When a force of magnitude \(P \mathrm {~N}\) acts downwards on the block at an angle \(\alpha\) to the horizontal, as shown in the diagram, the frictional force on the block has magnitude 6 N and the block is again on the point of slipping. Find
    (a) the value of \(\alpha\) in degrees,
    (b) the value of \(P\).
OCR M1 2006 June Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{8ee41313-b516-48cb-bc87-cd8e54245d28-4_314_997_267_577} A train of total mass 80000 kg consists of an engine \(E\) and two trucks \(A\) and \(B\). The engine \(E\) and truck \(A\) are connected by a rigid coupling \(X\), and trucks \(A\) and \(B\) are connected by another rigid coupling \(Y\). The couplings are light and horizontal. The train is moving along a straight horizontal track. The resistances to motion acting on \(E , A\) and \(B\) are \(10500 \mathrm {~N} , 3000 \mathrm {~N}\) and 1500 N respectively (see diagram).
  1. By modelling the whole train as a single particle, show that it is decelerating when the driving force of the engine is less than 15000 N .
  2. Show that, when the magnitude of the driving force is 35000 N , the acceleration of the train is \(0.25 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  3. Hence find the mass of \(E\), given that the tension in the coupling \(X\) is 8500 N when the magnitude of the driving force is 35000 N . The driving force is replaced by a braking force of magnitude 15000 N acting on the engine. The force exerted by the coupling \(Y\) is zero.
  4. Find the mass of \(B\).
  5. Show that the coupling \(X\) exerts a forward force of magnitude 1500 N on the engine.
OCR M1 2006 June Q7
7 A particle of mass 0.1 kg is at rest at a point \(A\) on a rough plane inclined at \(15 ^ { \circ }\) to the horizontal. The particle is given an initial velocity of \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and starts to move up a line of greatest slope of the plane. The particle comes to instantaneous rest after 1.5 s .
  1. Find the coefficient of friction between the particle and the plane.
  2. Show that, after coming to instantaneous rest, the particle moves down the plane.
  3. Find the speed with which the particle passes through \(A\) during its downward motion.
OCR M1 2007 June Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{ae5d1e27-5853-48aa-9046-86ce1c1a154a-2_415_823_264_660} Two horizontal forces \(\mathbf { P }\) and \(\mathbf { Q }\) act at the origin O of rectangular coordinates Oxy (see diagram). The components of \(\mathbf { P }\) in the \(x\) - and \(y\)-directions are 14 N and 5 N respectively. The components of \(\mathbf { Q }\) in the \(x\) - and \(y\)-directions are - 9 N and 7 N respectively.
  1. Write down the components, in the \(x\) - and \(y\)-directions, of the resultant of \(\mathbf { P }\) and \(\mathbf { Q }\).
  2. Hence find the magnitude of this resultant, and the angle the resultant makes with the positive \(x\)-axis.
OCR M1 2007 June Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{ae5d1e27-5853-48aa-9046-86ce1c1a154a-2_714_1048_1231_552} A particle starts from the point A and travels in a straight line. The diagram shows the ( \(\mathrm { t } , \mathrm { v }\) ) graph, consisting of three straight line segments, for the motion of the particle during the interval \(0 \leqslant t \leqslant 290\).
  1. Find the value of ther which the distance of the particle from A is greatest.
  2. Find the displacement of the particle from A when \(\mathrm { t } = 290\).
  3. Find the total distance travelled by the particle during the interval \(0 \leqslant \mathrm { t } \leqslant 290\).
OCR M1 2007 June Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{ae5d1e27-5853-48aa-9046-86ce1c1a154a-3_437_846_274_651} A block of mass 50 kg is in equilibrium on smooth horizontal ground with one end of a light wire attached to its upper surface. The other end of the wire is attached to an object of mass mkg . The wire passes over a small smooth pulley, and the object hangs vertically below the pulley. The part of the wire between the block and the pulley makes an angle of \(72 ^ { \circ }\) with the horizontal. A horizontal force of magnitude X N acts on the block in the vertical plane containing the wire (see diagram). The tension in the wire is T N and the contact force exerted by the ground on the block is R N.
  1. By resolving forces on the block vertically, find a relationship between T and R . It is given that the block is on the point of lifting off the ground.
  2. Show that \(\mathrm { T } = 515\), correct to 3 significant figures, and hence find the value of m .
  3. By resolving forces on the block horizontally, write down a relationship between T and X , and hence find the value of \(X\).
OCR M1 2007 June Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{ae5d1e27-5853-48aa-9046-86ce1c1a154a-3_149_606_1626_772} Two particles of masses 0.18 kg and m kg move on a smooth horizontal plane. They are moving towards each other in the same straight line when they collide. Immediately before the impact the speeds of the particles are \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively (see diagram).
  1. Given that the particles are brought to rest by the impact, find m .
  2. Given instead that the particles move with equal speeds of \(1.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) after the impact, find
    (a) the value of m , assuming that the particles move in opposite directions after the impact,
    (b) the two possible values of m , assuming that the particles coalesce.
OCR M1 2007 June Q5
5 A particle \(P\) is projected vertically upwards, from horizontal ground, with speed \(8.4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Show that the greatest height above the ground reached by P is 3.6 m . A particle Q is projected vertically upwards, from a point 2 m above the ground, with speed \(\mathrm { um } \mathrm { s } ^ { - 1 }\). The greatest height abovetheground reached by Q is also 3.6 m .
  2. Find the value of \(u\). It is given that P and Q are projected simultaneously.
  3. Show that, at the instant when P and Q are at the same height, the particles have the same speed and are moving in opposite directions.
OCR M1 2007 June Q6
6 A particle starts from rest at the point A and travels in a straight line. The displacement sm of the particle from A at time ts after leaving A is given by $$s = 0.001 t ^ { 4 } - 0.04 t ^ { 3 } + 0.6 t ^ { 2 } , \quad \text { for } 0 \leqslant t \leqslant 10 .$$
  1. Show that the velocity of the particle is \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when \(\mathrm { t } = 10\). The acceleration of the particle for \(t \geqslant 10\) is \(( 0.8 - 0.08 t ) \mathrm { m } \mathrm { s } ^ { - 2 }\).
  2. Show that the velocity of the particle is zero when \(\mathrm { t } = 20\).
  3. Find the displacement from A of the particle when \(\mathrm { t } = 20\).
OCR M1 2007 June Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{ae5d1e27-5853-48aa-9046-86ce1c1a154a-5_488_739_269_703} One end of a light inextensible string is attached to a block of mass 1.5 kg . The other end of the string is attached to an object of mass 1.2 kg . The block is held at rest in contact with a rough plane inclined at \(21 ^ { \circ }\) to the horizontal. The string is taut and passes over a small smooth pulley at the bottom edge of the plane. The part of the string above the pulley is parallel to a line of greatest slope of the plane and the object hangs freely below the pulley (see diagram). The block is released and the object moves vertically downwards with acceleration \(\mathrm { am } \mathrm { s } ^ { - 2 }\). The tension in the string is TN . The coefficient of friction between the block and the plane is 0.8 .
  1. Show that the frictional force acting on the block has magnitude 10.98 N , correct to 2 decimal places.
  2. By applying Newton's second law to the block and to the object, find a pair of simultaneous equations in T and a .
  3. Hence show that \(\mathrm { a } = 2.24\), correct to 2 decimal places.
  4. Given that the object is initially 2 m above a horizontal floor and that the block is 2.8 m from the pulley, find the speed of the block at the instant when
    (a) the object reaches the floor,
    (b) the block reaches the pulley. \href{http://physicsandmathstutor.com}{physicsandmathstutor.com}
    7
OCR M1 2010 June Q1
1 A block \(B\) of mass 3 kg moves with deceleration \(1.2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) in a straight line on a rough horizontal surface. The initial speed of \(B\) is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Calculate
  1. the time for which \(B\) is in motion,
  2. the distance travelled by \(B\) before it comes to rest,
  3. the coefficient of friction between \(B\) and the surface.
OCR M1 2010 June Q2
2 Two particles \(P\) and \(Q\) are moving in opposite directions in the same straight line on a smooth horizontal surface when they collide. \(P\) has mass 0.4 kg and speed \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 } . Q\) has mass 0.6 kg and speed \(1.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Immediately after the collision, the speed of \(P\) is \(0.1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Given that \(P\) and \(Q\) are moving in the same direction after the collision, find the speed of \(Q\).
  2. Given instead that \(P\) and \(Q\) are moving in opposite directions after the collision, find the distance between them 3 s after the collision.
OCR M1 2010 June Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{4b703cf9-b3d3-4210-b57b-89136595f8a5-02_570_495_1114_826} Three horizontal forces of magnitudes \(12 \mathrm {~N} , 5 \mathrm {~N}\), and 9 N act along bearings \(000 ^ { \circ } , 150 ^ { \circ }\) and \(270 ^ { \circ }\) respectively (see diagram).
  1. Show that the component of the resultant of the three forces along bearing \(270 ^ { \circ }\) has magnitude 6.5 N .
  2. Find the component of the resultant of the three forces along bearing \(000 ^ { \circ }\).
  3. Hence find the magnitude and bearing of the resultant of the three forces.