4 A cyclist travels along a straight road. Her velocity \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), at time \(t\) seconds after starting from a point \(O\), is given by
$$\begin{aligned}
& v = 2 \quad \text { for } 0 \leqslant t \leqslant 10
& v = 0.03 t ^ { 2 } - 0.3 t + 2 \quad \text { for } t \geqslant 10 .
\end{aligned}$$
- Find the displacement of the cyclist from \(O\) when \(t = 10\).
- Show that, for \(t \geqslant 10\), the displacement of the cyclist from \(O\) is given by the expression \(0.01 t ^ { 3 } - 0.15 t ^ { 2 } + 2 t + 5\).
- Find the time when the acceleration of the cyclist is \(0.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Hence find the displacement of the cyclist from \(O\) when her acceleration is \(0.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).