Questions — OCR C4 (310 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR C4 Q6
6 Express \(6 \cos 2 \theta + \sin \theta\) in terms of \(\sin \theta\).
Hence solve the equation \(6 \cos 2 \theta + \sin \theta = 0\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR C4 Q7
7
  1. Show that \(\cos ( \alpha + \beta ) = \frac { 1 - \tan \alpha \tan \beta } { \sec \alpha \sec \beta }\).
  2. Hence show that \(\cos 2 \alpha = \frac { 1 - \tan ^ { 2 } \alpha } { 1 + \tan ^ { 2 } \alpha }\).
  3. Hence or otherwise solve the equation \(\frac { 1 - \tan ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta } = \frac { 1 } { 2 }\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR C4 Q8
8 In Fig. 6, OAB is a thin bent rod, with \(\mathrm { OA } = a\) metres, \(\mathrm { AB } = b\) metres and angle \(\mathrm { OAB } = 120 ^ { \circ }\). The bent rod lies in a vertical plane. OA makes an angle \(\theta\) above the horizontal. The vertical height BD of B above O is \(h\) metres. The horizontal through A meets BD at C and the vertical through A meets OD at E . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9a4946dc-ab5a-499c-922c-a9eb1cd0f756-3_426_889_507_665} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find angle BAC in terms of \(\theta\). Hence show that $$h = a \sin \theta + b \sin \left( \theta - 60 ^ { \circ } \right) .$$
  2. Hence show that \(h = \left( a + \frac { 1 } { 2 } b \right) \sin \theta - \frac { \sqrt { 3 } } { 2 } b \cos \theta\). The rod now rotates about O , so that \(\theta\) varies. You may assume that the formulae for \(h\) in parts (i) and (ii) remain valid.
  3. Show that OB is horizontal when \(\tan \theta = \frac { \sqrt { 3 } b } { 2 a + b }\). In the case when \(a = 1\) and \(b = 2 , h = 2 \sin \theta - \sqrt { 3 } \cos \theta\).
  4. Express \(2 \sin \theta - \sqrt { 3 } \cos \theta\) in the form \(R \sin ( \theta - \alpha )\). Hence, for this case, write down the maximum value of \(h\) and the corresponding value of \(\theta\).
  5. Express \(\cos \theta + \sqrt { 3 } \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(\alpha\) is acute, expressing \(\alpha\) in terms of \(\pi\).
  6. Write down the derivative of \(\tan \theta\). Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \frac { 1 } { ( \cos \theta + \sqrt { 3 } \sin \theta ) ^ { 2 } } \mathrm {~d} \theta = \frac { \sqrt { 3 } } { 4 }\).
OCR C4 2009 January Q1
1 Simplify \(\frac { 20 - 5 x } { 6 x ^ { 2 } - 24 x }\).
OCR C4 2009 January Q2
2 Find \(\int x \sec ^ { 2 } x \mathrm {~d} x\).
OCR C4 2009 January Q3
3
  1. Expand \(( 1 + 2 x ) ^ { \frac { 1 } { 2 } }\) as a series in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
  2. Hence find the expansion of \(\frac { ( 1 + 2 x ) ^ { \frac { 1 } { 2 } } } { ( 1 + x ) ^ { 3 } }\) as a series in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
  3. State the set of values of \(x\) for which the expansion in part (ii) is valid.
OCR C4 2009 January Q4
4 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } ( 1 + \sin x ) ^ { 2 } \mathrm {~d} x\).
OCR C4 2009 January Q5
5
  1. Show that the substitution \(u = \sqrt { x }\) transforms \(\int \frac { 1 } { x ( 1 + \sqrt { x } ) } \mathrm { d } x\) to \(\int \frac { 2 } { u ( 1 + u ) } \mathrm { d } u\).
  2. Hence find the exact value of \(\int _ { 1 } ^ { 9 } \frac { 1 } { x ( 1 + \sqrt { x } ) } \mathrm { d } x\).
OCR C4 2009 January Q6
6 A curve has parametric equations $$x = t ^ { 2 } - 6 t + 4 , \quad y = t - 3 .$$ Find
  1. the coordinates of the point where the curve meets the \(x\)-axis,
  2. the equation of the curve in cartesian form, giving your answer in a simple form without brackets,
  3. the equation of the tangent to the curve at the point where \(t = 2\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
OCR C4 2009 January Q7
7
  1. Show that the straight line with equation \(\mathbf { r } = \left( \begin{array} { r } 2
    - 3
    5 \end{array} \right) + t \left( \begin{array} { r } 1
    4
    - 2 \end{array} \right)\) meets the line passing through ( \(9,7,5\) ) and ( \(7,8,2\) ), and find the point of intersection of these lines.
  2. Find the acute angle between these lines.
OCR C4 2009 January Q8
8 The equation of a curve is \(x ^ { 3 } + y ^ { 3 } = 6 x y\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Show that the point \(\left( 2 ^ { \frac { 4 } { 3 } } , 2 ^ { \frac { 5 } { 3 } } \right)\) lies on the curve and that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) at this point.
  3. The point \(( a , a )\), where \(a > 0\), lies on the curve. Find the value of \(a\) and the gradient of the curve at this point.
OCR C4 2009 January Q9
9 A liquid is being heated in an oven maintained at a constant temperature of \(160 ^ { \circ } \mathrm { C }\). It may be assumed that the rate of increase of the temperature of the liquid at any particular time \(t\) minutes is proportional to \(160 - \theta\), where \(\theta ^ { \circ } \mathrm { C }\) is the temperature of the liquid at that time.
  1. Write down a differential equation connecting \(\theta\) and \(t\). When the liquid was placed in the oven, its temperature was \(20 ^ { \circ } \mathrm { C }\) and 5 minutes later its temperature had risen to \(65 ^ { \circ } \mathrm { C }\).
  2. Find the temperature of the liquid, correct to the nearest degree, after another 5 minutes. 4
OCR C4 2010 January Q1
1 Find the quotient and the remainder when \(x ^ { 4 } + 11 x ^ { 3 } + 28 x ^ { 2 } + 3 x + 1\) is divided by \(x ^ { 2 } + 5 x + 2\).
OCR C4 2010 January Q2
2 Points \(A , B\) and \(C\) have position vectors \(- 5 \mathbf { i } - 10 \mathbf { j } + 12 \mathbf { k } , \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k }\) and \(3 \mathbf { i } + 6 \mathbf { j } + p \mathbf { k }\) respectively, where \(p\) is a constant.
  1. Given that angle \(A B C = 90 ^ { \circ }\), find the value of \(p\).
  2. Given instead that \(A B C\) is a straight line, find the value of \(p\).
OCR C4 2010 January Q3
3 By expressing \(\cos 2 x\) in terms of \(\cos x\), find the exact value of \(\int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 3 } \pi } \frac { \cos 2 x } { \cos ^ { 2 } x } \mathrm {~d} x\).
OCR C4 2010 January Q4
4 Use the substitution \(u = 2 + \ln t\) to find the exact value of $$\int _ { 1 } ^ { \mathrm { e } } \frac { 1 } { t ( 2 + \ln t ) ^ { 2 } } \mathrm {~d} t$$
OCR C4 2010 January Q5
5
  1. Expand \(( 1 + x ) ^ { \frac { 1 } { 3 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
  2. (a) Hence, or otherwise, expand \(( 8 + 16 x ) ^ { \frac { 1 } { 3 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
    (b) State the set of values of \(x\) for which the expansion in part (ii) (a) is valid.
OCR C4 2010 January Q6
6 A curve has parametric equations $$x = 9 t - \ln ( 9 t ) , \quad y = t ^ { 3 } - \ln \left( t ^ { 3 } \right)$$ Show that there is only one value of \(t\) for which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) and state that value.
OCR C4 2010 January Q7
7 Find the equation of the normal to the curve \(x ^ { 3 } + 2 x ^ { 2 } y = y ^ { 3 } + 15\) at the point \(( 2,1 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
OCR C4 2010 January Q8
8
  1. State the derivative of \(\mathrm { e } ^ { \cos x }\).
  2. Hence use integration by parts to find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos x \sin x \mathrm { e } ^ { \cos x } \mathrm {~d} x$$
OCR C4 2010 January Q9
9 The equation of a straight line \(l\) is \(\mathbf { r } = \left( \begin{array} { l } 3
1
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 1
2 \end{array} \right) . O\) is the origin.
  1. The point \(P\) on \(l\) is given by \(t = 1\). Calculate the acute angle between \(O P\) and \(l\).
  2. Find the position vector of the point \(Q\) on \(l\) such that \(O Q\) is perpendicular to \(l\).
  3. Find the length of \(O Q\).
OCR C4 2010 January Q10
10
  1. Express \(\frac { 1 } { ( 3 - x ) ( 6 - x ) }\) in partial fractions.
  2. In a chemical reaction, the amount \(x\) grams of a substance at time \(t\) seconds is related to the rate at which \(x\) is changing by the equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = k ( 3 - x ) ( 6 - x )$$ where \(k\) is a constant. When \(t = 0 , x = 0\) and when \(t = 1 , x = 1\).
    (a) Show that \(k = \frac { 1 } { 3 } \ln \frac { 5 } { 4 }\).
    (b) Find the value of \(x\) when \(t = 2\).
OCR C4 2011 January Q1
1
  1. Expand \(( 1 - x ) ^ { \frac { 1 } { 2 } }\) in ascending powers of \(x\) as far as the term in \(x ^ { 2 }\).
  2. Hence expand \(\left( 1 - 2 y + 4 y ^ { 2 } \right) ^ { \frac { 1 } { 2 } }\) in ascending powers of \(y\) as far as the term in \(y ^ { 2 }\).
OCR C4 2011 January Q2
2
  1. Express \(\frac { 7 - 2 x } { ( x - 2 ) ^ { 2 } }\) in the form \(\frac { A } { x - 2 } + \frac { B } { ( x - 2 ) ^ { 2 } }\), where \(A\) and \(B\) are constants.
  2. Hence find the exact value of \(\int _ { 4 } ^ { 5 } \frac { 7 - 2 x } { ( x - 2 ) ^ { 2 } } \mathrm {~d} x\).
OCR C4 2011 January Q3
3
  1. Show that the derivative of \(\sec x\) can be written as \(\sec x \tan x\).
  2. Find \(\int \frac { \tan x } { \sqrt { 1 + \cos 2 x } } \mathrm {~d} x\).