OCR C4 2009 January — Question 9

Exam BoardOCR
ModuleC4 (Core Mathematics 4)
Year2009
SessionJanuary
TopicDifferential equations

9 A liquid is being heated in an oven maintained at a constant temperature of \(160 ^ { \circ } \mathrm { C }\). It may be assumed that the rate of increase of the temperature of the liquid at any particular time \(t\) minutes is proportional to \(160 - \theta\), where \(\theta ^ { \circ } \mathrm { C }\) is the temperature of the liquid at that time.
  1. Write down a differential equation connecting \(\theta\) and \(t\). When the liquid was placed in the oven, its temperature was \(20 ^ { \circ } \mathrm { C }\) and 5 minutes later its temperature had risen to \(65 ^ { \circ } \mathrm { C }\).
  2. Find the temperature of the liquid, correct to the nearest degree, after another 5 minutes. 4