9 Lines \(L _ { 1 } , L _ { 2 }\) and \(L _ { 3 }\) have vector equations
$$\begin{aligned}
& L _ { 1 } : \mathbf { r } = ( 5 \mathbf { i } - \mathbf { j } - 2 \mathbf { k } ) + s ( - 6 \mathbf { i } + 8 \mathbf { j } - 2 \mathbf { k } ) ,
& L _ { 2 } : \mathbf { r } = ( 3 \mathbf { i } - 8 \mathbf { j } ) + t ( \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k } ) ,
& L _ { 3 } : \mathbf { r } = ( 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } ) + u ( 3 \mathbf { i } + c \mathbf { j } + \mathbf { k } ) .
\end{aligned}$$
- Calculate the acute angle between \(L _ { 1 }\) and \(L _ { 2 }\).
- Given that \(L _ { 1 }\) and \(L _ { 3 }\) are parallel, find the value of \(c\).
- Given instead that \(L _ { 2 }\) and \(L _ { 3 }\) intersect, find the value of \(c\).
4