| Exam Board | OCR |
| Module | C4 (Core Mathematics 4) |
| Session | Specimen |
| Topic | Differential equations |
9
\includegraphics[max width=\textwidth, alt={}, center]{798da17d-0af5-4aa6-b731-564642dc28d5-4_572_917_294_607}
A cylindrical container has a height of 200 cm . The container was initially full of a chemical but there is a leak from a hole in the base. When the leak is noticed, the container is half-full and the level of the chemical is dropping at a rate of 1 cm per minute. It is required to find for how many minutes the container has been leaking. To model the situation it is assumed that, when the depth of the chemical remaining is \(x \mathrm {~cm}\), the rate at which the level is dropping is proportional to \(\sqrt { } x\).
Set up and solve an appropriate differential equation, and hence show that the container has been leaking for about 80 minutes.