Questions — Edexcel (9685 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel F3 2021 October Q2
6 marks Standard +0.8
2. Given that $$\cosh y = x \quad \text { and } \quad y < 0$$ use the definition of coshy in terms of exponential functions to prove that $$y = \ln \left( x - \sqrt { x ^ { 2 } - 1 } \right)$$
Edexcel F3 2021 October Q3
9 marks Challenging +1.8
3. The ellipse \(E\) has equation $$\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 36 } = 1$$ The line \(l\) is the normal to \(E\) at the point \(P ( 8 \cos \theta , 6 \sin \theta )\).
  1. Using calculus, show that an equation for \(l\) is $$4 x \sin \theta - 3 y \cos \theta = 14 \sin \theta \cos \theta$$ The line \(l\) meets the \(x\)-axis at the point \(A\) and meets the \(y\)-axis at the point \(B\).
    The point \(M\) is the midpoint of \(A B\).
  2. Determine a Cartesian equation for the locus of \(M\) as \(\theta\) varies, giving your answer in the form \(a x ^ { 2 } + b y ^ { 2 } = c\) where \(a , b\) and \(c\) are integers.
Edexcel F3 2021 October Q4
11 marks Challenging +1.2
4. The matrix \(\mathbf { M }\) is given by $$\left( \begin{array} { r r r } 2 & 0 & - 1 \\ k & 3 & 2 \\ - 2 & 1 & k \end{array} \right)$$
  1. Show that \(\operatorname { det } \mathbf { M } = 5 k - 10\) Given that \(k \neq 2\)
  2. find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\). The points \(O ( 0,0,0 ) , A ( 4 , - 8,3 ) , B ( - 2,5 , - 4 )\) and \(C ( 4 , - 6,8 )\) are the vertices of a tetrahedron \(T\). The transformation represented by matrix \(\mathbf { M }\) transforms \(T\) to a tetrahedron with volume 50
  3. Determine the possible values of \(k\).
Edexcel F3 2021 October Q5
10 marks Standard +0.8
  1. The skew lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations
$$l _ { 1 } : \mathbf { r } = ( \mathbf { i } + 2 \mathbf { j } - 5 \mathbf { k } ) + \lambda ( 5 \mathbf { i } + \mathbf { j } )$$ and $$l _ { 2 } : \mathbf { r } = ( 2 \mathbf { i } - 4 \mathbf { j } + 4 \mathbf { k } ) + \mu ( 8 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } )$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Determine a vector that is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\)
  2. Determine an equation of the plane parallel to \(l _ { 1 }\) that contains \(l _ { 2 }\)
    1. in the form \(\mathbf { r } = \mathbf { a } + s \mathbf { b } + t \mathbf { c }\)
    2. in the form r.n \(= p\)
  3. Determine the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\) Give your answer in simplest form.
Edexcel F3 2021 October Q6
9 marks Challenging +1.8
6. $$I _ { n } = \int _ { 0 } ^ { \sqrt { \frac { \pi } { 2 } } } x ^ { n } \cos \left( x ^ { 2 } \right) \mathrm { d } x \quad n \geqslant 1$$
  1. Prove that, for \(n \geqslant 5\) $$I _ { n } = \frac { 1 } { 2 } \left( \frac { \pi } { 2 } \right) ^ { \frac { n - 1 } { 2 } } - \frac { 1 } { 4 } ( n - 1 ) ( n - 3 ) I _ { n - 4 }$$
  2. Hence, determine the exact value of \(I _ { 5 }\), giving your answer in its simplest form.
Edexcel F3 2021 October Q7
11 marks Challenging +1.8
7. A hyperbola \(H\) has equation $$\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { 25 } = 1$$ where \(a\) is a positive constant.
The eccentricity of \(H\) is \(e\).
  1. Determine an expression for \(e ^ { 2 }\) in terms of \(a\). The line \(l\) is the directrix of \(H\) for which \(x > 0\) The points \(A\) and \(A ^ { \prime }\) are the points of intersection of \(l\) with the asymptotes of \(H\).
  2. Determine, in terms of \(e\), the length of the line segment \(A A ^ { \prime }\). The point \(F\) is the focus of \(H\) for which \(x < 0\) Given that the area of triangle \(A F A ^ { \prime }\) is \(\frac { 164 } { 3 }\)
  3. show that \(a\) is a solution of the equation $$30 a ^ { 3 } - 164 a ^ { 2 } + 375 a - 4100 = 0$$
  4. Hence, using algebra and making your reasoning clear, show that the only possible value of \(a\) is \(\frac { 20 } { 3 }\)
Edexcel F3 2021 October Q8
13 marks Challenging +1.2
8. $$y = \arccos ( 2 \sqrt { x } )$$
  1. Determine \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. Show that $$\int y \mathrm {~d} x = x \arccos ( 2 \sqrt { x } ) + \int \frac { \sqrt { x } } { \sqrt { 1 - 4 x } } \mathrm {~d} x$$
  3. Use the substitution \(\sqrt { x } = \frac { 1 } { 2 } \cos \theta\) to show that $$\int _ { 0 } ^ { \frac { 1 } { 8 } } \frac { \sqrt { x } } { \sqrt { 1 - 4 x } } \mathrm {~d} x = \frac { 1 } { 4 } \int _ { a } ^ { b } \cos ^ { 2 } \theta \mathrm {~d} \theta$$ where \(a\) and \(b\) are limits to be determined.
  4. Hence, determine the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 8 } } \arccos ( 2 \sqrt { x } ) d x$$
Edexcel F3 2018 Specimen Q1
6 marks Standard +0.3
  1. The curve \(C\) has equation
$$y = 9 \cosh x + 3 \sinh x + 7 x$$ Use differentiation to find the exact \(x\) coordinate of the stationary point of \(C\), giving your answer as a natural logarithm.
VIIIV SIHI NI IIIHM ION OCVIUV SIHI NI I II HM I ON OOVERV SIHI NI JIIIM ION OO
Edexcel F3 2018 Specimen Q2
11 marks Challenging +1.2
2. An ellipse has equation $$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1$$ The point \(P\) lies on the ellipse and has coordinates \(( 5 \cos \theta , 2 \sin \theta ) , 0 < \theta < \frac { \pi } { 2 }\) The line \(L\) is a normal to the ellipse at the point \(P\).
  1. Show that an equation for \(L\) is $$5 x \sin \theta - 2 y \cos \theta = 21 \sin \theta \cos \theta$$ Given that the line \(L\) crosses the \(y\)-axis at the point \(Q\) and that \(M\) is the midpoint of \(P Q\),
  2. find the exact area of triangle \(O P M\), where \(O\) is the origin, giving your answer as a multiple of \(\sin 2 \theta\)
    VIIIV SIHI NI JAIIM ION OCVIIIV SIHI NI JIHMM ION OOVI4V SIHI NI JIIYM IONOO
Edexcel F3 2018 Specimen Q3
12 marks Standard +0.8
3. Without using a calculator, find
  1. \(\int _ { - 2 } ^ { 1 } \frac { 1 } { x ^ { 2 } + 4 x + 13 } \mathrm {~d} x\), giving your answer as a multiple of \(\pi\),
  2. \(\int _ { - 1 } ^ { 4 } \frac { 1 } { \sqrt { 4 x ^ { 2 } - 12 x + 34 } } \mathrm {~d} x\), giving your answer in the form \(p \ln ( q + r \sqrt { 2 } )\),
    where \(p , q\) and \(r\) are rational numbers to be found.
    VIIIV SIHI NI J14M 10N OCVIIN SIHI NI III HM ION OOVERV SIHI NI JIIIM ION OO
Edexcel F3 2018 Specimen Q5
7 marks Challenging +1.8
  1. Given that \(y = \operatorname { artanh } ( \cos x )\)
    1. show that
    $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosec } x$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 6 } } \cos x \operatorname { artanh } ( \cos x ) d x$$ giving your answer in the form \(a \ln ( b + c \sqrt { 3 } ) + d \pi\), where \(a , b , c\) and \(d\) are rational numbers to be found.
    VIIIV SIHI NI IIIYM ION OCVIIV SIHI NI JIIIM ION OCVEXV SIHIL NI JIIIM ION OO
Edexcel F3 2018 Specimen Q6
9 marks Standard +0.8
  1. The coordinates of the points \(A , B\) and \(C\) relative to a fixed origin \(O\) are \(( 1,2,3 )\),
The point \(D\) has coordinates \(( k , 4,14 )\) where \(k\) is a positive constant.
Given that the volume of the tetrahedron \(A B C D\) is 6 cubic units,
(b) find the value of \(k\). \section*{\(( - 1,3,4 )\) and \(( 2,1,6 )\) respectively. The plane \(\Pi\) contains the points \(A , B\) and \(C\).
(a) Find a cartesian equation of the plane \(\Pi\).
6. \(( - 1,3,4 )\) and \(( 2,1,6 )\) respectively. The plane (a) Find a cartesian equation of the plane \(\Pi\).}
Edexcel F3 2018 Specimen Q7
11 marks
  1. The curve \(C\) has parametric equations
$$x = 3 t ^ { 4 } , \quad y = 4 t ^ { 3 } , \quad 0 \leqslant t \leqslant 1$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. The area of the curved surface generated is \(S\).
  1. Show that $$S = k \pi \int _ { 0 } ^ { 1 } t ^ { 5 } \left( t ^ { 2 } + 1 \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} t$$ where \(k\) is a constant to be found.
  2. Use the substitution \(u ^ { 2 } = t ^ { 2 } + 1\) to find the value of \(S\), giving your answer in the form \(p \pi ( 11 \sqrt { 2 } - 4 )\) where \(p\) is a rational number to be found.
Edexcel FP3 Q2
7 marks Standard +0.8
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4255ef1b-2186-4a7e-adf3-a963601c95b2-04_333_360_328_794} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The points \(A , B\) and \(C\) have position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\) respectively, relative to a fixed origin \(O\), as shown in Figure 1. It is given that $$\mathbf { a } = \mathbf { i } + \mathbf { j } , \quad \mathbf { b } = 3 \mathbf { i } - \mathbf { j } + \mathbf { k } \quad \text { and } \quad \mathbf { c } = 2 \mathbf { i } + \mathbf { j } - \mathbf { k } .$$ Calculate
  1. \(\mathbf { b } \times \mathbf { c }\),
  2. a.(b \(\times \mathbf { c ) }\),
  3. the area of triangle \(O B C\),
  4. the volume of the tetrahedron \(O A B C\).
Edexcel FP3 2009 June Q1
5 marks Standard +0.8
  1. Solve the equation
$$7 \operatorname { sech } x - \tanh x = 5$$ Give your answers in the form \(\ln a\) where \(a\) is a rational number.
Edexcel FP3 2009 June Q2
8 marks Standard +0.3
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8b3dd4a1-b270-4bd7-88d6-fe10601f9d74-03_333_360_328_794} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The points \(A , B\) and \(C\) have position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\) respectively, relative to a fixed origin \(O\), as shown in Figure 1. It is given that $$\mathbf { a } = \mathbf { i } + \mathbf { j } , \quad \mathbf { b } = 3 \mathbf { i } - \mathbf { j } + \mathbf { k } \quad \text { and } \quad \mathbf { c } = 2 \mathbf { i } + \mathbf { j } - \mathbf { k } .$$ Calculate
  1. \(\mathbf { b } \times \mathbf { c }\),
  2. a.(b \(\times \mathbf { c ) }\),
  3. the area of triangle \(O B C\),
  4. the volume of the tetrahedron \(O A B C\).
Edexcel FP3 2009 June Q3
9 marks Standard +0.3
3. $$\mathbf { M } = \left( \begin{array} { r r r } 6 & 1 & - 1 \\ 0 & 7 & 0 \\ 3 & - 1 & 2 \end{array} \right)$$
  1. Show that 7 is an eigenvalue of the matrix \(\mathbf { M }\) and find the other two eigenvalues of \(\mathbf { M }\).
  2. Find an eigenvector corresponding to the eigenvalue 7.
Edexcel FP3 2009 June Q4
9 marks Challenging +1.3
  1. Given that \(y = \operatorname { arsinh } ( \sqrt { } x ) , x > 0\),
    1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer as a simplified fraction.
    2. Hence, or otherwise, find
    $$\int _ { \frac { 1 } { 4 } } ^ { 4 } \frac { 1 } { \sqrt { [ x ( x + 1 ) ] } } \mathrm { d } x$$ giving your answer in the form \(\ln \left( \frac { a + b \sqrt { } 5 } { 2 } \right)\), where \(a\) and \(b\) are integers.
Edexcel FP3 2009 June Q5
11 marks Challenging +1.3
5. $$I _ { n } = \int _ { 0 } ^ { 5 } \frac { x ^ { n } } { \sqrt { } \left( 25 - x ^ { 2 } \right) } d x , \quad n \geqslant 0$$
  1. Find an expression for \(\int \frac { x } { \sqrt { } \left( 25 - x ^ { 2 } \right) } \mathrm { d } x , \quad 0 \leqslant x \leqslant 5\).
  2. Using your answer to part (a), or otherwise, show that $$I _ { n } = \frac { 25 ( n - 1 ) } { n } I _ { n - 2 } \quad n \geqslant 2$$
  3. Find \(I _ { 4 }\) in the form \(k \pi\), where \(k\) is a fraction.
Edexcel FP3 2009 June Q6
11 marks Challenging +1.2
  1. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1\), where \(a\) and \(b\) are constants.
The line \(L\) has equation \(y = m x + c\), where \(m\) and \(c\) are constants.
  1. Given that \(L\) and \(H\) meet, show that the \(x\)-coordinates of the points of intersection are the roots of the equation $$\left( a ^ { 2 } m ^ { 2 } - b ^ { 2 } \right) x ^ { 2 } + 2 a ^ { 2 } m c x + a ^ { 2 } \left( c ^ { 2 } + b ^ { 2 } \right) = 0$$ Hence, given that \(L\) is a tangent to \(H\),
  2. show that \(a ^ { 2 } m ^ { 2 } = b ^ { 2 } + c ^ { 2 }\). The hyperbola \(H ^ { \prime }\) has equation \(\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1\).
  3. Find the equations of the tangents to \(H ^ { \prime }\) which pass through the point \(( 1,4 )\).
Edexcel FP3 2009 June Q7
11 marks Standard +0.3
7. The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = \left( \begin{array} { r } 1 \\ - 1 \\ 2 \end{array} \right) + \lambda \left( \begin{array} { r } - 1 \\ 3 \\ 4 \end{array} \right) \text { and } \quad \mathbf { r } = \left( \begin{array} { r } \alpha \\ - 4 \\ 0 \end{array} \right) + \mu \left( \begin{array} { l } 0 \\ 3 \\ 2 \end{array} \right) .$$ If the lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect, find
  1. the value of \(\alpha\),
  2. an equation for the plane containing the lines \(l _ { 1 }\) and \(l _ { 2 }\), giving your answer in the form \(a x + b y + c z + d = 0\), where \(a , b , c\) and \(d\) are constants. For other values of \(\alpha\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) do not intersect and are skew lines.
    Given that \(\alpha = 2\),
  3. find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\).
Edexcel FP3 2009 June Q8
11 marks Challenging +1.8
  1. A curve, which is part of an ellipse, has parametric equations
$$x = 3 \cos \theta , \quad y = 5 \sin \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 } .$$ The curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
  1. Show that the area of the surface generated is given by the integral $$k \pi \int _ { 0 } ^ { \alpha } \sqrt { } \left( 16 c ^ { 2 } + 9 \right) \mathrm { d } c , \quad \text { where } c = \cos \theta$$ and where \(k\) and \(\alpha\) are constants to be found.
  2. Using the substitution \(c = \frac { 3 } { 4 } \sinh u\), or otherwise, evaluate the integral, showing all of your working and giving the final answer to 3 significant figures.
Edexcel FP3 2010 June Q1
5 marks Challenging +1.2
  1. The line \(x = 8\) is a directrix of the ellipse with equation
$$\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 , \quad a > 0 , b > 0$$ and the point \(( 2,0 )\) is the corresponding focus.
Find the value of \(a\) and the value of \(b\).
Edexcel FP3 2010 June Q2
5 marks Standard +0.3
2. Use calculus to find the exact value of \(\int _ { - 2 } ^ { 1 } \frac { 1 } { x ^ { 2 } + 4 x + 13 } \mathrm {~d} x\).
Edexcel FP3 2010 June Q3
8 marks Standard +0.3
3. (a) Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that $$\cosh 2 x = 1 + 2 \sinh ^ { 2 } x$$ (b) Solve the equation $$\cosh 2 x - 3 \sinh x = 15$$ giving your answers as exact logarithms.