Edexcel F3 2021 October — Question 7

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2021
SessionOctober
TopicConic sections

7. A hyperbola \(H\) has equation $$\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { 25 } = 1$$ where \(a\) is a positive constant.
The eccentricity of \(H\) is \(e\).
  1. Determine an expression for \(e ^ { 2 }\) in terms of \(a\). The line \(l\) is the directrix of \(H\) for which \(x > 0\)
    The points \(A\) and \(A ^ { \prime }\) are the points of intersection of \(l\) with the asymptotes of \(H\).
  2. Determine, in terms of \(e\), the length of the line segment \(A A ^ { \prime }\). The point \(F\) is the focus of \(H\) for which \(x < 0\)
    Given that the area of triangle \(A F A ^ { \prime }\) is \(\frac { 164 } { 3 }\)
  3. show that \(a\) is a solution of the equation $$30 a ^ { 3 } - 164 a ^ { 2 } + 375 a - 4100 = 0$$
  4. Hence, using algebra and making your reasoning clear, show that the only possible value of \(a\) is \(\frac { 20 } { 3 }\)