A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Integration using inverse trig and hyperbolic functions
Q4
Edexcel FP3 2009 June — Question 4
Exam Board
Edexcel
Module
FP3 (Further Pure Mathematics 3)
Year
2009
Session
June
Topic
Integration using inverse trig and hyperbolic functions
Given that \(y = \operatorname { arsinh } ( \sqrt { } x ) , x > 0\),
find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer as a simplified fraction.
Hence, or otherwise, find
$$\int _ { \frac { 1 } { 4 } } ^ { 4 } \frac { 1 } { \sqrt { [ x ( x + 1 ) ] } } \mathrm { d } x$$ giving your answer in the form \(\ln \left( \frac { a + b \sqrt { } 5 } { 2 } \right)\), where \(a\) and \(b\) are integers.
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8