- The skew lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations
$$l _ { 1 } : \mathbf { r } = ( \mathbf { i } + 2 \mathbf { j } - 5 \mathbf { k } ) + \lambda ( 5 \mathbf { i } + \mathbf { j } )$$
and
$$l _ { 2 } : \mathbf { r } = ( 2 \mathbf { i } - 4 \mathbf { j } + 4 \mathbf { k } ) + \mu ( 8 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } )$$
where \(\lambda\) and \(\mu\) are scalar parameters.
- Determine a vector that is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\)
- Determine an equation of the plane parallel to \(l _ { 1 }\) that contains \(l _ { 2 }\)
- in the form \(\mathbf { r } = \mathbf { a } + s \mathbf { b } + t \mathbf { c }\)
- in the form r.n \(= p\)
- Determine the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\)
Give your answer in simplest form.