Edexcel F3 2021 October — Question 8

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2021
SessionOctober
TopicIntegration using inverse trig and hyperbolic functions

8. $$y = \arccos ( 2 \sqrt { x } )$$
  1. Determine \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. Show that $$\int y \mathrm {~d} x = x \arccos ( 2 \sqrt { x } ) + \int \frac { \sqrt { x } } { \sqrt { 1 - 4 x } } \mathrm {~d} x$$
  3. Use the substitution \(\sqrt { x } = \frac { 1 } { 2 } \cos \theta\) to show that $$\int _ { 0 } ^ { \frac { 1 } { 8 } } \frac { \sqrt { x } } { \sqrt { 1 - 4 x } } \mathrm {~d} x = \frac { 1 } { 4 } \int _ { a } ^ { b } \cos ^ { 2 } \theta \mathrm {~d} \theta$$ where \(a\) and \(b\) are limits to be determined.
  4. Hence, determine the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 8 } } \arccos ( 2 \sqrt { x } ) d x$$