Edexcel F3 2018 Specimen — Question 2

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2018
SessionSpecimen
TopicConic sections

2. An ellipse has equation $$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1$$ The point \(P\) lies on the ellipse and has coordinates \(( 5 \cos \theta , 2 \sin \theta ) , 0 < \theta < \frac { \pi } { 2 }\) The line \(L\) is a normal to the ellipse at the point \(P\).
  1. Show that an equation for \(L\) is $$5 x \sin \theta - 2 y \cos \theta = 21 \sin \theta \cos \theta$$ Given that the line \(L\) crosses the \(y\)-axis at the point \(Q\) and that \(M\) is the midpoint of \(P Q\),
  2. find the exact area of triangle \(O P M\), where \(O\) is the origin, giving your answer as a multiple of \(\sin 2 \theta\)
    VIIIV SIHI NI JAIIM ION OCVIIIV SIHI NI JIHMM ION OOVI4V SIHI NI JIIYM IONOO