Questions — Edexcel (9685 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FP2 2013 June Q3
5 marks Standard +0.8
3. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y - \sin x = 0$$ Given that \(y = \frac { 1 } { 2 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 8 }\) at \(x = 0\), find a series expansion for \(y\) in terms of \(x\), up to and including the term in \(x ^ { 3 }\).
Edexcel FP2 2013 June Q4
7 marks Standard +0.8
4. (a) Given that $$z = r ( \cos \theta + \mathrm { i } \sin \theta ) , \quad r \in \mathbb { R }$$ prove, by induction, that \(z ^ { n } = r ^ { n } ( \cos n \theta + \mathrm { i } \sin n \theta ) , \quad n \in \mathbb { Z } ^ { + }\) $$w = 3 \left( \cos \frac { 3 \pi } { 4 } + i \sin \frac { 3 \pi } { 4 } \right)$$ (b) Find the exact value of \(w ^ { 5 }\), giving your answer in the form \(a + \mathrm { i } b\), where \(a , b \in \mathbb { R }\).
Edexcel FP2 2013 June Q5
12 marks Standard +0.3
  1. (a) Find the general solution of the differential equation
    (b) Find the particular solution for which \(y = 5\) at \(x = 1\), giving your answer in the form \(y = \mathrm { f } ( x )\).
$$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 4 x ^ { 2 }$$ (c) (i) Find the exact values of the coordinates of the turning points of the curve with equation \(y = \mathrm { f } ( x )\), making your method clear.
(ii) Sketch the curve with equation \(y = \mathrm { f } ( x )\), showing the coordinates of the turning points.
Edexcel FP2 2013 June Q6
12 marks Standard +0.3
  1. (a) Use algebra to find the exact solutions of the equation
$$\left| 2 x ^ { 2 } + 6 x - 5 \right| = 5 - 2 x$$ (b) On the same diagram, sketch the curve with equation \(y = \left| 2 x ^ { 2 } + 6 x - 5 \right|\) and the line with equation \(y = 5 - 2 x\), showing the \(x\)-coordinates of the points where the line crosses the curve.
(c) Find the set of values of \(x\) for which $$\left| 2 x ^ { 2 } + 6 x - 5 \right| > 5 - 2 x$$
Edexcel FP2 2013 June Q7
13 marks Challenging +1.2
  1. (a) Show that the transformation \(y = x v\) transforms the equation
$$4 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 8 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + \left( 8 + 4 x ^ { 2 } \right) y = x ^ { 4 }$$ into the equation $$4 \frac { \mathrm {~d} ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 4 v = x$$ (b) Solve the differential equation (II) to find \(v\) as a function of \(x\).
(c) Hence state the general solution of the differential equation (I).
Edexcel FP2 2013 June Q8
15 marks Challenging +1.2
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6b8b399d-ba16-4fcb-be45-0ba40a7ae09d-13_542_748_205_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a curve \(C\) with polar equation \(r = a \sin 2 \theta , 0 \leqslant \theta \leqslant \frac { \pi } { 2 }\), and a half-line \(l\).
The half-line \(l\) meets \(C\) at the pole \(O\) and at the point \(P\). The tangent to \(C\) at \(P\) is parallel to the initial line. The polar coordinates of \(P\) are \(( R , \phi )\).
  1. Show that \(\cos \phi = \frac { 1 } { \sqrt { 3 } }\)
  2. Find the exact value of \(R\). The region \(S\), shown shaded in Figure 1, is bounded by \(C\) and \(l\).
  3. Use calculus to show that the exact area of \(S\) is $$\frac { 1 } { 36 } a ^ { 2 } \left( 9 \arccos \left( \frac { 1 } { \sqrt { 3 } } \right) + \sqrt { 2 } \right)$$
Edexcel FP2 2014 June Q1
5 marks Standard +0.8
  1. (a) Express \(\frac { 2 } { 4 r ^ { 2 } - 1 }\) in partial fractions.
    (b) Hence use the method of differences to show that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }$$
Edexcel FP2 2014 June Q2
5 marks Standard +0.3
2. Using algebra, find the set of values of \(x\) for which $$3 x - 5 < \frac { 2 } { x }$$
Edexcel FP2 2014 June Q3
8 marks Standard +0.8
3. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y \tan x = \mathrm { e } ^ { 4 x } \cos ^ { 2 } x , \quad - \frac { \pi } { 2 } < x < \frac { \pi } { 2 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
(b) Find the particular solution for which \(y = 1\) at \(x = 0\)
Edexcel FP2 2014 June Q4
9 marks Challenging +1.2
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c9fff982-d38b-42ff-ab4e-08008439a95b-06_456_1273_262_388} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve \(C\) with polar equation $$r = 2 \cos 2 \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 4 }$$ The line \(l\) is parallel to the initial line and is a tangent to \(C\). Find an equation of \(l\), giving your answer in the form \(r = \mathrm { f } ( \theta )\).
Edexcel FP2 2014 June Q5
9 marks Challenging +1.2
5. $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 2 y = 0$$
  1. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\). Given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0.5\) at \(x = 0\),
  2. find a series solution for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
    5. \(y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 2 y = 0\)
  3. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\).
Edexcel FP2 2014 June Q6
11 marks Challenging +1.2
6. The transformation \(T\) maps points from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\). The transformation \(T\) is given by $$w = \frac { z } { i z + 1 } , \quad z \neq i$$ The transformation \(T\) maps the line \(l\) in the \(z\)-plane onto the line with equation \(v = - 1\) in the \(w\)-plane.
  1. Find a cartesian equation of \(l\) in terms of \(x\) and \(y\). The transformation \(T\) maps the line with equation \(y = \frac { 1 } { 2 }\) in the \(z\)-plane onto the curve \(C\) in the \(w\)-plane.
    1. Show that \(C\) is a circle with centre the origin.
    2. Write down a cartesian equation of \(C\) in terms of \(u\) and \(v\).
Edexcel FP2 2014 June Q7
14 marks Challenging +1.8
7. (a) Use de Moivre's theorem to show that $$\sin 5 \theta \equiv 16 \sin ^ { 5 } \theta - 20 \sin ^ { 3 } \theta + 5 \sin \theta$$ (b) Hence find the five distinct solutions of the equation $$16 x ^ { 5 } - 20 x ^ { 3 } + 5 x + \frac { 1 } { 2 } = 0$$ giving your answers to 3 decimal places where necessary.
(c) Use the identity given in (a) to find $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \left( 4 \sin ^ { 5 } \theta - 5 \sin ^ { 3 } \theta \right) \mathrm { d } \theta$$ expressing your answer in the form \(a \sqrt { } 2 + b\), where \(a\) and \(b\) are rational numbers.
Edexcel FP2 2014 June Q8
14 marks Challenging +1.2
8. (a) Show that the substitution \(x = \mathrm { e } ^ { z }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - 2 y = 3 \ln x , \quad x > 0$$ into the equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} z ^ { 2 } } + \frac { \mathrm { d } y } { \mathrm {~d} z } - 2 y = 3 z$$ (b) Find the general solution of the differential equation (II).
(c) Hence obtain the general solution of the differential equation (I) giving your answer in the form \(y = \mathrm { f } ( x )\). \(\square\)
Edexcel FP2 2014 June Q1
6 marks Standard +0.3
  1. (a) Express \(\frac { 2 } { ( r + 2 ) ( r + 4 ) }\) in partial fractions.
    (b) Hence show that
$$\sum _ { r = 1 } ^ { n } \frac { 2 } { ( r + 2 ) ( r + 4 ) } = \frac { n ( 7 n + 25 ) } { 12 ( n + 3 ) ( n + 4 ) }$$
Edexcel FP2 2014 June Q2
6 marks Standard +0.8
2. Use algebra to find the set of values of \(x\) for which $$\left| 3 x ^ { 2 } - 19 x + 20 \right| < 2 x + 2$$
Edexcel FP2 2014 June Q3
8 marks Standard +0.8
3. $$y = \sqrt { 8 + \mathrm { e } ^ { x } } , \quad x \in \mathbb { R }$$ Find the series expansion for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\), giving each coefficient in its simplest form.
Edexcel FP2 2014 June Q4
10 marks Standard +0.8
4. (a) Use de Moivre's theorem to show that $$\cos 6 \theta = 32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1$$ (b) Hence solve for \(0 \leqslant \theta \leqslant \frac { \pi } { 2 }\) $$64 \cos ^ { 6 } \theta - 96 \cos ^ { 4 } \theta + 36 \cos ^ { 2 } \theta - 3 = 0$$ giving your answers as exact multiples of \(\pi\).
Edexcel FP2 2014 June Q5
12 marks Standard +0.8
  1. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 10 y = 27 \mathrm { e } ^ { - x }$$ (b) Find the particular solution that satisfies \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\)
Edexcel FP2 2014 June Q6
10 marks Challenging +1.2
6. The transformation \(T\) from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\), is given by $$w = \frac { 4 ( 1 - \mathrm { i } ) z - 8 \mathrm { i } } { 2 ( - 1 + \mathrm { i } ) z - \mathrm { i } } , \quad z \neq \frac { 1 } { 4 } - \frac { 1 } { 4 } \mathrm { i }$$ The transformation \(T\) maps the points on the line \(l\) with equation \(y = x\) in the \(z\)-plane to a circle \(C\) in the \(w\)-plane.
  1. Show that $$w = \frac { a x ^ { 2 } + b x i + c } { 16 x ^ { 2 } + 1 }$$ where \(a\), \(b\) and \(c\) are real constants to be found.
  2. Hence show that the circle \(C\) has equation $$( u - 3 ) ^ { 2 } + v ^ { 2 } = k ^ { 2 }$$ where \(k\) is a constant to be found.
Edexcel FP2 2014 June Q7
11 marks Challenging +1.2
7. (a) Show that the substitution \(v = y ^ { - 3 }\) transforms the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 2 x ^ { 4 } y ^ { 4 }$$ into the differential equation $$\begin{aligned} & \frac { \mathrm { d } v } { \mathrm {~d} x } - \frac { 3 v } { x } = - 6 x ^ { 3 } \\ & \text { ration (II), find a general solution of differential equation (I) } \end{aligned}$$ in the form \(y ^ { 3 } = \mathrm { f } ( x )\).
Edexcel FP2 2014 June Q8
12 marks Challenging +1.2
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c21767d7-7331-47f7-8e59-06a0727c67c5-13_771_1036_260_593} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with polar equation $$r = 1 + \tan \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The tangent to the curve \(C\) at the point \(P\) is perpendicular to the initial line.
  1. Find the polar coordinates of the point \(P\). The point \(Q\) lies on the curve \(C\), where \(\theta = \frac { \pi } { 3 }\) The shaded region \(R\) is bounded by \(O P , O Q\) and the curve \(C\), as shown in Figure 1
  2. Find the exact area of \(R\), giving your answer in the form $$\frac { 1 } { 2 } ( \ln p + \sqrt { q } + r )$$ where \(p , q\) and \(r\) are integers to be found.
Edexcel FP2 2015 June Q1
7 marks Standard +0.3
  1. (a) Use algebra to find the set of values of \(x\) for which
$$x + 2 > \frac { 12 } { x + 3 }$$ (b) Hence, or otherwise, find the set of values of \(x\) for which $$x + 2 > \frac { 12 } { | x + 3 | }$$
Edexcel FP2 2015 June Q2
9 marks Standard +0.3
2. $$z = - 2 + ( 2 \sqrt { 3 } ) \mathrm { i }$$
  1. Find the modulus and the argument of \(z\). Using de Moivre's theorem,
  2. find \(z ^ { 6 }\), simplifying your answer,
  3. find the values of \(w\) such that \(w ^ { 4 } = z ^ { 3 }\), giving your answers in the form \(a + \mathrm { i } b\) where \(a , b \in \mathbb { R }\).
Edexcel FP2 2015 June Q3
6 marks Standard +0.8
  1. Find, in the form \(y = \mathrm { f } ( x )\), the general solution of the differential equation
$$\tan x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 3 \cos 2 x \tan x , \quad 0 < x < \frac { \pi } { 2 }$$