Questions — Edexcel S1 (574 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel S1 2004 January Q2
2. The random variable \(X\) is normally distributed with mean \(\mu\) and variance \(\sigma ^ { 2 }\).
  1. Write down 3 properties of the distribution of \(X\). Given that \(\mu = 27\) and \(\sigma = 10\)
  2. find \(\mathrm { P } ( 26 < X < 28 )\).
Edexcel S1 2004 January Q3
3. A discrete random variable \(X\) has the probability function shown in the table below.
\(x\)0123
\(\mathrm { P } ( X = x )\)\(\frac { 1 } { 3 }\)\(\frac { 1 } { 2 }\)\(\frac { 1 } { 12 }\)\(\frac { 1 } { 12 }\)
Find
  1. \(\mathrm { P } ( 1 < X \leq 3 )\),
  2. \(\mathrm { F } ( 2.6 )\),
  3. \(\mathrm { E } ( X )\),
  4. \(\mathrm { E } ( 2 X - 3 )\),
  5. \(\operatorname { Var } ( X )\)
Edexcel S1 2004 January Q4
4. \(\quad\) The events \(A\) and \(B\) are such that \(\mathrm { P } ( A ) = \frac { 2 } { 5 } , \mathrm { P } ( B ) = \frac { 1 } { 2 }\) and \(\mathrm { P } \left( A \quad B ^ { \prime } \right) = \frac { 4 } { 5 }\).
  1. Find
    1. \(\mathrm { P } \left( A \cap B ^ { \prime } \right)\),
    2. \(\mathrm { P } ( A \cap B )\),
    3. \(\mathrm { P } ( A \cup B )\),
    4. \(\mathrm { P } \left( \begin{array} { l l } A & B \end{array} \right)\).
  2. State, with a reason, whether or \(\operatorname { not } A\) and \(B\) are
    1. mutually exclusive,
    2. independent.
Edexcel S1 2004 January Q5
5. The values of daily sales, to the nearest \(\pounds\), taken at a newsagents last year are summarised in the table below.
SalesNumber of days
\(1 - 200\)166
\(201 - 400\)100
\(401 - 700\)59
\(701 - 1000\)30
\(1001 - 1500\)5
  1. Draw a histogram to represent these data.
  2. Use interpolation to estimate the median and inter-quartile range of daily sales.
  3. Estimate the mean and the standard deviation of these data. The newsagent wants to compare last year's sales with other years.
  4. State whether the newsagent should use the median and the inter-quartile range or the mean and the standard deviation to compare daily sales. Give a reason for your answer.
    (2)
Edexcel S1 2004 January Q6
6. One of the objectives of a computer game is to collect keys. There are three stages to the game. The probability of collecting a key at the first stage is \(\frac { 2 } { 3 }\), at the second stage is \(\frac { 1 } { 2 }\), and at the third stage is \(\frac { 1 } { 4 }\).
  1. Draw a tree diagram to represent the 3 stages of the game.
  2. Find the probability of collecting all 3 keys.
  3. Find the probability of collecting exactly one key in a game.
  4. Calculate the probability that keys are not collected on at least 2 successive stages in a game.
Edexcel S1 2016 June Q1
  1. The percentage oil content, \(p\), and the weight, \(w\) milligrams, of each of 10 randomly selected sunflower seeds were recorded. These data are summarised below.
$$\sum w ^ { 2 } = 41252 \quad \sum w p = 27557.8 \quad \sum w = 640 \quad \sum p = 431 \quad \mathrm {~S} _ { p p } = 2.72$$
  1. Find the value of \(\mathrm { S } _ { w w }\) and the value of \(\mathrm { S } _ { w p }\)
  2. Calculate the product moment correlation coefficient between \(p\) and \(w\)
  3. Give an interpretation of your product moment correlation coefficient. The equation of the regression line of \(p\) on \(w\) is given in the form \(p = a + b w\)
  4. Find the equation of the regression line of \(p\) on \(w\)
  5. Hence estimate the percentage oil content of a sunflower seed which weighs 60 milligrams.
Edexcel S1 2016 June Q2
2. The time taken to complete a puzzle, in minutes, is recorded for each person in a club. The times are summarised in a grouped frequency distribution and represented by a histogram. One of the class intervals has a frequency of 20 and is shown by a bar of width 1.5 cm and height 12 cm on the histogram. The total area under the histogram is \(94.5 \mathrm {~cm} ^ { 2 }\) Find the number of people in the club.
(3)
VILM SIMI NI JIIIM I ON OC
VILV SIHI NI JAHM ION OC
VJ4V SIHI NI JIIYM ION OC
Edexcel S1 2016 June Q3
3. The discrete random variable \(X\) has probability distribution $$\mathrm { P } ( X = x ) = \frac { 1 } { 5 } \quad x = 1,2,3,4,5$$
  1. Write down the name given to this distribution. Find
  2. \(\mathrm { P } ( X = 4 )\)
  3. \(\mathrm { F } ( 3 )\)
  4. \(\mathrm { P } ( 3 X - 3 > X + 4 )\)
  5. Write down \(\mathrm { E } ( X )\)
  6. Find \(\mathrm { E } \left( X ^ { 2 } \right)\)
  7. Hence find \(\operatorname { Var } ( X )\) Given that \(\mathrm { E } ( a X - 3 ) = 11.4\)
  8. find \(\operatorname { Var } ( a X - 3 )\)
Edexcel S1 2016 June Q4
4. A researcher recorded the time, \(t\) minutes, spent using a mobile phone during a particular afternoon, for each child in a club. The researcher coded the data using \(v = \frac { t - 5 } { 10 }\) and the results are summarised in the table below.
Coded Time (v)Frequency ( \(\boldsymbol { f }\) )Coded Time Midpoint (m)
\(0 \leqslant v < 5\)202.5
\(5 \leqslant v < 10\)24\(a\)
\(10 \leqslant v < 15\)1612.5
\(15 \leqslant v < 20\)1417.5
\(20 \leqslant v < 30\)6\(b\)
$$\text { (You may use } \sum f m = 825 \text { and } \sum f m ^ { 2 } = 12012.5 \text { ) }$$
  1. Write down the value of \(a\) and the value of \(b\).
  2. Calculate an estimate of the mean of \(v\).
  3. Calculate an estimate of the standard deviation of \(v\).
  4. Use linear interpolation to estimate the median of \(v\).
  5. Hence describe the skewness of the distribution. Give a reason for your answer.
  6. Calculate estimates of the mean and the standard deviation of the time spent using a mobile phone during the afternoon by the children in this club.
Edexcel S1 2016 June Q5
5. A biased tetrahedral die has faces numbered \(0,1,2\) and 3 . The die is rolled and the number face down on the die, \(X\), is recorded. The probability distribution of \(X\) is
\(x\)0123
\(\mathrm { P } ( X = x )\)\(\frac { 1 } { 6 }\)\(\frac { 1 } { 6 }\)\(\frac { 1 } { 6 }\)\(\frac { 1 } { 2 }\)
If \(X = 3\) then the final score is 3
If \(X \neq 3\) then the die is rolled again and the final score is the sum of the two numbers. The random variable \(T\) is the final score.
  1. Find \(\mathrm { P } ( T = 2 )\)
  2. Find \(\mathrm { P } ( T = 3 )\)
  3. Given that the die is rolled twice, find the probability that the final score is 3
Edexcel S1 2016 June Q6
6. Three events \(A , B\) and \(C\) are such that $$\mathrm { P } ( A ) = \frac { 2 } { 5 } \quad \mathrm { P } ( C ) = \frac { 1 } { 2 } \quad \mathrm { P } ( A \cup B ) = \frac { 5 } { 8 }$$ Given that \(A\) and \(C\) are mutually exclusive find
  1. \(\mathrm { P } ( A \cup C )\) Given that \(A\) and \(B\) are independent
  2. show that \(\mathrm { P } ( B ) = \frac { 3 } { 8 }\)
  3. Find \(\mathrm { P } ( A \mid B )\) Given that \(\mathrm { P } \left( C ^ { \prime } \cap B ^ { \prime } \right) = 0.3\)
  4. draw a Venn diagram to represent the events \(A , B\) and \(C\)
Edexcel S1 2016 June Q7
7. A machine fills bottles with water. The volume of water delivered by the machine to a bottle is \(X \mathrm { ml }\) where \(X \sim \mathrm {~N} \left( \mu , \sigma ^ { 2 } \right)\) One of these bottles of water is selected at random. Given that \(\mu = 503\) and \(\sigma = 1.6\)
  1. find
    1. \(\mathrm { P } ( X > 505 )\)
    2. \(\mathrm { P } ( 501 < X < 505 )\)
  2. Find \(w\) such that \(\mathrm { P } ( 1006 - w < X < w ) = 0.9426\) Following adjustments to the machine, the volume of water delivered by the machine to a bottle is such that \(\mu = 503\) and \(\sigma = q\) Given that \(\mathrm { P } ( X < r ) = 0.01\) and \(\mathrm { P } ( X > r + 6 ) = 0.05\)
  3. find the value of \(r\) and the value of \(q\)
Edexcel S1 2018 June Q1
  1. A random sample of 10 cars of different makes and sizes is taken and the published miles per gallon, \(p\), and the actual miles per gallon, \(m\), are recorded. The data are coded using variables \(x = \frac { p } { 10 }\) and \(y = m - 25\)
The results for the coded data are summarised below.
\(\boldsymbol { x }\)6.893.675.925.044.873.924.715.143.655.23
\(\boldsymbol { y }\)30322151381513.5319
(You may use \(\sum y ^ { 2 } = 2628.25 \quad \sum x y = 768.58 \quad \mathrm {~S} _ { x x } = 9.25924 \quad \mathrm {~S} _ { x y } = 74.664\) )
  1. Show that \(\mathrm { S } _ { y y } = 626.025\)
  2. Find the product moment correlation coefficient between \(x\) and \(y\).
  3. Give a reason to support fitting a regression model of the form \(y = a + b x\) to these data.
  4. Find the equation of the regression line of \(y\) on \(x\), giving your answer in the form \(y = a + b x\).
    Give the value of \(a\) and the value of \(b\) to 3 significant figures. A car's published miles per gallon is 44
  5. Estimate the actual miles per gallon for this particular car.
  6. Comment on the reliability of your estimate in part (e). Give a reason for your answer.
Edexcel S1 2018 June Q2
2. Two youth clubs, Eastyou and Westyou, decided to raise money for charity by running a 5 km race. All the members of the youth clubs took part and the time, in minutes, taken for each member to run the 5 km was recorded. The times for the Westyou members are summarised in Figure 1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b115bffa-1190-4a2b-b6f2-b006580e8dbd-06_349_1378_497_274} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure}
  1. Write down the time that is exceeded by \(75 \%\) of Westyou members. The times for the Eastyou members are summarised by the stem and leaf diagram below.
    StemLeaf
    20234\(( 4 )\)
    25688899
    300000111222234\(( 14 )\)
    355579\(( 5 )\)
    Key: 2|0 means 20 minutes
  2. Find the value of the median and interquartile range for the Eastyou members. An outlier is a value that falls either
  3. On the grid on page 7, draw a box plot to represent the times of the Eastyou members.
  4. State the skewness of each distribution. Give reasons for your answers. $$\begin{aligned} & \text { more than } 1.5 \times \left( Q _ { 3 } - Q _ { 1 } \right) \text { above } Q _ { 3 }
    & \text { or more than } 1.5 \times \left( Q _ { 3 } - Q _ { 1 } \right) \text { below } Q _ { 1 } \end{aligned}$$
    \includegraphics[max width=\textwidth, alt={}]{b115bffa-1190-4a2b-b6f2-b006580e8dbd-06_2255_50_314_1976}
    \includegraphics[max width=\textwidth, alt={}, center]{b115bffa-1190-4a2b-b6f2-b006580e8dbd-07_406_1390_2224_262} Turn over for a spare grid if you need to redraw your box plot. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Only use this grid if you need to redraw your box plot.} \includegraphics[alt={},max width=\textwidth]{b115bffa-1190-4a2b-b6f2-b006580e8dbd-09_401_1399_2261_258}
    \end{figure}
Edexcel S1 2018 June Q3
  1. A manufacturer of electric generators buys engines for its generators from three companies, \(R , S\) and \(T\).
Company \(R\) supplies 40\% of the engines. Company \(S\) supplies \(25 \%\) of the engines. The rest of the engines are supplied by company \(T\). It is known that \(2 \%\) of the engines supplied by company \(R\) are faulty, \(1 \%\) of the engines supplied by company \(S\) are faulty and \(2 \%\) of the engines supplied by company \(T\) are faulty. An engine is chosen at random.
  1. Draw a tree diagram to show all the possible outcomes and the associated probabilities.
  2. Calculate the probability that the engine is from company \(R\) and is not faulty.
  3. Calculate the probability that the engine is faulty. Given that the engine is faulty,
  4. find the probability that the engine did not come from company \(S\).
Edexcel S1 2018 June Q4
4. A discrete random variable \(X\) has probability function $$\mathrm { P } ( X = x ) = \left\{ \begin{array} { c l } k ( 2 - x ) & x = 0,1
k ( 3 - x ) & x = 2,3
k ( x + 1 ) & x = 4
0 & \text { otherwise } \end{array} \right.$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 9 }\) Find the exact value of
  2. \(\mathrm { P } ( 1 \leqslant X < 4 )\)
  3. \(\mathrm { E } ( X )\)
  4. \(\mathrm { E } \left( X ^ { 2 } \right)\)
  5. \(\operatorname { Var } ( 3 X + 1 )\)
Edexcel S1 2018 June Q5
5. The weights, in grams, of a random sample of 48 broad beans are summarised in the table.
Weight in grams ( \(\boldsymbol { x }\) )Frequency (f)Class midpoint (y)
\(0.9 < x \leqslant 1.1\)91.0
\(1.1 < x \leqslant 1.3\)121.2
\(1.3 < x \leqslant 1.5\)111.4
\(1.5 < x \leqslant 1.7\)81.6
\(1.7 < x \leqslant 1.9\)31.8
\(1.9 < x \leqslant 2.1\)32.0
\(2.1 < x \leqslant 2.7\)22.4
(You may assume \(\sum \mathrm { fy } { } ^ { 2 } = 101.56\) ) A histogram was drawn to represent these data. The \(2.1 < x \leqslant 2.7\) class was represented by a bar of width 1.5 cm and height 1 cm .
  1. Find the width and height of the \(0.9 < x \leqslant 1.1\) class.
  2. Give a reason to justify the use of a histogram to represent these data.
  3. Estimate the mean and the standard deviation of the weights of these broad beans.
  4. Use linear interpolation to estimate the median of the weights of these broad beans. One of these broad beans is selected at random.
  5. Estimate the probability that its weight lies between 1.1 grams and 1.6 grams. One of these broad beans having a recorded weight of 0.95 grams was incorrectly weighed. The correct weight is 1.4 grams.
  6. State, giving a reason, the effect this would have on your answers to part (c). Do not carry out any further calculations.
Edexcel S1 2018 June Q6
6. The waiting time, \(L\) minutes, to see a doctor at a health centre is normally distributed with \(L \sim \mathrm {~N} \left( \mu , \sigma ^ { 2 } \right)\). Given that \(\mathrm { P } ( L < 15 ) = 0.9\) and \(\mathrm { P } ( L < 5 ) = 0.05\)
  1. find the value of \(\mu\) and the value of \(\sigma\). There are 23 people waiting to see a doctor at the health centre.
  2. Determine the expected number of these people who will have a waiting time of more than 12 minutes.
Edexcel S1 2018 June Q7
  1. Events \(A\) and \(B\) are such that
$$\mathrm { P } ( A ) = 0.5 \quad \mathrm { P } ( A \mid B ) = \frac { 2 } { 3 } \quad \mathrm { P } \left( A ^ { \prime } \cup B ^ { \prime } \right) = 0.6$$
  1. Find \(\mathrm { P } ( B )\)
  2. Find \(\mathrm { P } \left( A ^ { \prime } \mid B ^ { \prime } \right)\) The event \(C\) has \(\mathrm { P } ( C ) = 0.15\) The events \(A\) and \(C\) are mutually exclusive. The events \(B\) and \(C\) are independent.
  3. Find \(\mathrm { P } ( B \cap C )\)
  4. Draw a Venn diagram to illustrate the events \(A , B\) and \(C\) and the probabilities for each region.
Edexcel S1 2019 June Q1
  1. The heights, \(x\) metres, of 40 children were recorded by a teacher. The results are summarised as follows
$$\sum x = 58 \quad \sum x ^ { 2 } = 84.829$$
  1. Find the mean and the variance of the heights of these 40 children. The teacher decided that these statistics would be more useful in centimetres.
  2. Find
    1. the mean of these heights in centimetres,
    2. the standard deviation of these heights in centimetres. Two more children join the group. Their heights are 130 cm and 160 cm .
    1. State, giving a reason, the mean height of the 42 children.
    2. Without recalculating the standard deviation, state, giving a reason, whether the standard deviation of the heights of the 42 children will be greater than, less than or the same as the standard deviation of the heights of the group of 40 children.
Edexcel S1 2019 June Q2
2. Chi wanted to summarise the scores of the 39 competitors in a village quiz. He started to produce the following stem and leaf diagram Key: 2|5 is a score of 25 \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Score}
11589
202589
3355789\(\ldots\)
\end{table} He did not complete the stem and leaf diagram but instead produced the following box plot.
\includegraphics[max width=\textwidth, alt={}, center]{9ac7647f-b291-4a64-9518-fa6438a0cc7d-04_357_1237_772_356} Chi defined an outlier as a value that is $$\text { greater than } Q _ { 3 } + 1.5 \times \left( Q _ { 3 } - Q _ { 1 } \right)$$ or
less than \(Q _ { 1 } - 1.5 \times \left( Q _ { 3 } - Q _ { 1 } \right)\)
  1. Find
    1. the interquartile range
    2. the range.
  2. Describe, giving a reason, the skewness of the distribution of scores. Albert and Beth asked for their scores to be checked.
    Albert's score was changed from 25 to 37
    Beth's score was changed from 54 to 60
  3. On the grid on page 5, draw an updated box plot. Show clearly any calculations that you used. Some of the competitors complained that the questions were biased towards the younger generation. The product moment correlation coefficient between the age of the competitors and their score in the quiz is - 0.187
  4. State, giving a reason, whether or not the complaint is supported by this statistic. \includegraphics[max width=\textwidth, alt={}, center]{9ac7647f-b291-4a64-9518-fa6438a0cc7d-05_360_1242_2238_351} Turn over for a spare grid if you need to redraw your box plot. \includegraphics[max width=\textwidth, alt={}, center]{9ac7647f-b291-4a64-9518-fa6438a0cc7d-07_367_1246_2261_351}
Edexcel S1 2019 June Q3
3. A certain disease occurs in a population in 2 mutually exclusive types. It is difficult to diagnose people with type \(A\) of the disease and there is an unknown proportion \(p\) of the population with type \(A\).
It is easier to diagnose people with type \(B\) of the disease and it is known that \(2 \%\) of the population have type \(B\). A test has been developed to help diagnose whether or not a person has the disease. The event \(T\) represents a positive result on the test. After a large-scale trial of the test, the following information was obtained. For a person with type \(B\) of the disease the probability of a positive test result is 0.96 For a person who does not have the disease the probability of a positive test result is 0.05 For a person with type \(A\) of the disease the probability of a positive test result is \(q\)
  1. Complete the tree diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{9ac7647f-b291-4a64-9518-fa6438a0cc7d-08_776_965_1050_484} The probability of a randomly selected person having a positive test result is 0.169 For a person with a positive test result, the probability that they do not have the disease is \(\frac { 41 } { 169 }\)
  2. Find the value of \(p\) and the value of \(q\). A doctor is about to see a person who she knows does not have type \(B\) of the disease but does have a positive test result.
    1. Find the probability that this person has type \(A\) of the disease.
    2. State, giving a reason, whether or not the doctor will find the test useful.
Edexcel S1 2019 June Q4
  1. The weights of packages delivered to Susie are normally distributed with a mean of 510 grams and a standard deviation of 45 grams.
    1. Find the probability that a randomly selected package delivered to Susie weighs less than 450 grams.
    The heaviest 5\% of packages delivered to Susie are delivered by Rav in his van, the others are delivered by Taruni on foot.
  2. Find the weight of the lightest package that Rav would deliver to Susie. Susie randomly selects a package from those delivered by Taruni.
  3. Find the probability that this package weighs more than 450 grams. On Tuesday there are 5 packages delivered to Susie.
  4. Find the probability that 4 are delivered by Taruni and 1 is delivered by Rav.
Edexcel S1 2019 June Q5
  1. The discrete random variable \(X\) represents the score when a biased spinner is spun. The probability distribution of \(X\) is given by
\(x\)- 2- 1023
\(\mathrm { P } ( X = x )\)\(p\)\(p\)\(q\)\(\frac { 1 } { 4 }\)\(p\)
where \(p\) and \(q\) are probabilities.
  1. Find \(\mathrm { E } ( X )\). Given that \(\operatorname { Var } ( X ) = 2.5\)
  2. find the value of \(p\).
  3. Hence find the value of \(q\). Amar is invited to play a game with the spinner.
    The spinner is spun once and \(X _ { 1 }\) is the score on the spinner. If \(X _ { 1 } > 0\) Amar wins the game.
    If \(X _ { 1 } = 0\) Amar loses the game.
    If \(X _ { 1 } < 0\) the spinner is spun again and \(X _ { 2 }\) is the score on this second spin and if \(X _ { 1 } + X _ { 2 } > 0\) Amar wins the game, otherwise Amar loses the game.
  4. Find the probability that Amar wins the game. Amar does not want to lose the game.
    He says that because \(\mathrm { E } ( X ) > 0\) he will play the game.
  5. State, giving a reason, whether or not you would agree with Amar.
Edexcel S1 2019 June Q6
  1. Ranpose hospital offers services to a large number of clinics that refer patients to a range of hospitals.
    The manager at Ranpose hospital took a random sample of 16 clinics and recorded
  • the distance, \(x \mathrm {~km}\), of the clinic from Ranpose hospital
  • the percentage, \(y \%\), of the referrals from the clinic who attend Ranpose hospital.
The data are summarised as $$\bar { x } = 8.1 \quad \bar { y } = 20.5 \quad \sum y ^ { 2 } = 8266 \quad \mathrm {~S} _ { x x } = 368.16 \quad \mathrm {~S} _ { x y } = - 630.9$$
  1. Find the product moment correlation coefficient for these data.
  2. Give an interpretation of your correlation coefficient. The manager at Ranpose hospital believes that there may be a linear relationship between the distance of a clinic from the hospital and the percentage of the referrals who attend the hospital. She drew the following scatter diagram for these data.
    \includegraphics[max width=\textwidth, alt={}, center]{9ac7647f-b291-4a64-9518-fa6438a0cc7d-20_1106_926_1133_511}
  3. State, giving a reason, whether or not these data support the manager's belief.
    (1)
    \section*{[The summary data and the scatter diagram are repeated below.]} The data are summarised as $$\bar { x } = 8.1 \quad \bar { y } = 20.5 \quad \sum y ^ { 2 } = 8266 \quad \mathrm {~S} _ { x x } = 368.16 \quad \mathrm {~S} _ { x y } = - 630.9$$ \includegraphics[max width=\textwidth, alt={}, center]{9ac7647f-b291-4a64-9518-fa6438a0cc7d-22_1118_936_612_504}
  4. Find the equation of the regression line of \(y\) on \(x\), giving your answer in the form $$y = a + b x$$
  5. Give an interpretation of the gradient of your regression line.
  6. Draw your regression line on the scatter diagram. The manager believes that Ranpose hospital should be attracting an "above average" percentage of referrals from clinics that are less than 5 km from the hospital. She proposes to target one clinic with some extra publicity about the services Ranpose offers.
  7. On the scatter diagram circle the point representing the clinic she should target.
    VIIIV SIHI NI JIIYM ION OCNAMV SIHIL NI JAHAM ION OCVJ4V SIHII NI JIIYM ION OO