Questions — Edexcel FP1 (269 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FP1 Q1
1. $$\mathrm { f } ( x ) = 2 x ^ { 3 } - 8 x ^ { 2 } + 7 x - 3$$ Given that \(x = 3\) is a solution of the equation \(\mathrm { f } ( x ) = 0\), solve \(\mathrm { f } ( x ) = 0\) completely.
Edexcel FP1 Q5
5. $$f ( x ) = 3 \sqrt { } x + \frac { 18 } { \sqrt { } x } - 20$$
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) has a root \(\alpha\) in the interval \([ 1.1,1.2 ]\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\).
  3. Using \(x _ { 0 } = 1.1\) as a first approximation to \(\alpha\), apply the Newton-Raphson procedure once to \(\mathrm { f } ( x )\) to find a second approximation to \(\alpha\), giving your answer to 3 significant figures.
Edexcel FP1 Q6
6. A series of positive integers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 6 \text { and } u _ { n + 1 } = 6 u _ { n } - 5 , \text { for } n \geq 1 .$$ Prove by induction that \(u _ { n } = 5 \times 6 ^ { n - 1 } + 1\), for \(n \geq 1\).
Edexcel FP1 Q7
7. Given that \(\mathbf { X } = \left( \begin{array} { r r } 2 & a
- 1 & - 1 \end{array} \right)\), where \(a\) is a constant, and \(a \neq 2\),
  1. find \(\mathbf { X } ^ { - 1 }\) in terms of \(a\). Given that \(\mathbf { X } + \mathbf { X } ^ { - 1 } = \mathbf { I }\), where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix,
  2. find the value of \(a\).
Edexcel FP1 Q8
8. A parabola has equation \(y ^ { 2 } = 4 a x , a > 0\). The point \(Q \left( a q ^ { 2 } , 2 a q \right)\) lies on the parabola.
  1. Show that an equation of the tangent to the parabola at \(Q\) is $$y q = x + a q ^ { 2 }$$ This tangent meets the \(y\)-axis at the point \(R\).
  2. Find an equation of the line \(l\) which passes through \(R\) and is perpendicular to the tangent at \(Q\).
  3. Show that \(l\) passes through the focus of the parabola.
  4. Find the coordinates of the point where \(l\) meets the directrix of the parabola.
Edexcel FP1 Q9
9. Given that \(z _ { 1 } = 3 + 2 \mathrm { i }\) and \(z _ { 2 } = \frac { 12 - 5 \mathrm { i } } { z _ { 1 } }\),
  1. find \(z _ { 2 }\) in the form \(a + i b\), where \(a\) and \(b\) are real.
  2. Show, on an Argand diagram, the point \(P\) representing \(z _ { 1 }\) and the point \(Q\) representing \(z _ { 2 }\).
  3. Given that \(O\) is the origin, show that \(\angle P O Q = \frac { \pi } { 2 }\). The circle passing through the points \(O , P\) and \(Q\) has centre \(C\). Find
  4. the complex number represented by \(C\),
  5. the exact value of the radius of the circle.
Edexcel FP1 Q1
1. $$f ( x ) = 2 x ^ { 3 } - 8 x ^ { 2 } + 7 x - 3$$ Given that \(x = 3\) is a solution of the equation \(\mathrm { f } ( x ) = 0\), solve \(\mathrm { f } ( x ) = 0\) completely.
(5)
Edexcel FP1 Q6
6. A series of positive integers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 6 \text { and } u _ { n + 1 } = 6 u _ { n } - 5 , \text { for } n \geqslant 1 .$$ Prove by induction that \(u _ { n } = 5 \times 6 ^ { n - 1 } + 1\), for \(n \geqslant 1\).
Edexcel FP1 Q8
8. A parabola has equation \(y ^ { 2 } = 4 a x , a > 0\). The point \(Q \left( a q ^ { 2 } , 2 a q \right)\) lies on the parabola.
  1. Show that an equation of the tangent to the parabola at \(Q\) is $$y q = x + a q ^ { 2 }$$ This tangent meets the \(y\)-axis at the point \(R\).
  2. Find an equation of the line \(l\) which passes through \(R\) and is perpendicular to the tangent at \(Q\).
  3. Show that \(l\) passes through the focus of the parabola.
  4. Find the coordinates of the point where \(I\) meets the directrix of the parabola.
Edexcel FP1 Q9
9. Given that \(z _ { 1 } = 3 + 2 i\) and \(z _ { 2 } = \frac { 12 - 5 i } { z _ { 1 } }\),
  1. find \(z _ { 2 }\) in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are real.
  2. Show on an Argand diagram the point \(P\) representing \(z _ { 1 }\) and the point \(Q\) representing \(z _ { 2 }\).
  3. Given that \(O\) is the origin, show that \(\angle P O Q = \frac { \pi } { 2 }\). The circle passing through the points \(O , P\) and \(Q\) has centre \(C\). Find
  4. the complex number represented by C,
  5. the exact value of the radius of the circle.
Edexcel FP1 2009 January Q1
1. $$f ( x ) = 2 x ^ { 3 } - 8 x ^ { 2 } + 7 x - 3$$ Given that \(x = 3\) is a solution of the equation \(\mathrm { f } ( x ) = 0\), solve \(\mathrm { f } ( x ) = 0\) completely.
Edexcel FP1 2009 January Q2
2. (a) Show, using the formulae for \(\sum r\) and \(\sum r ^ { 2 }\), that $$\sum _ { r = 1 } ^ { n } \left( 6 r ^ { 2 } + 4 r - 1 \right) = n ( n + 2 ) ( 2 n + 1 )$$ (b) Hence, or otherwise, find the value of \(\sum _ { r = 11 } ^ { 20 } \left( 6 r ^ { 2 } + 4 r - 1 \right)\).
Edexcel FP1 2009 January Q3
3. The rectangular hyperbola, \(H\), has parametric equations \(x = 5 t , y = \frac { 5 } { t } , t \neq 0\).
  1. Write the cartesian equation of \(H\) in the form \(x y = c ^ { 2 }\). Points \(A\) and \(B\) on the hyperbola have parameters \(t = 1\) and \(t = 5\) respectively.
  2. Find the coordinates of the mid-point of \(A B\).
Edexcel FP1 2009 January Q4
4. Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\), $$\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) } = \frac { n } { n + 1 }$$
Edexcel FP1 2009 January Q5
5. $$f ( x ) = 3 \sqrt { } x + \frac { 18 } { \sqrt { } x } - 20$$
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) has a root \(\alpha\) in the interval [1.1,1.2].
  2. Find \(\mathrm { f } ^ { \prime } ( x )\).
  3. Using \(x _ { 0 } = 1.1\) as a first approximation to \(\alpha\), apply the Newton-Raphson procedure once to \(\mathrm { f } ( x )\) to find a second approximation to \(\alpha\), giving your answer to 3 significant figures.
Edexcel FP1 2009 January Q6
6. A series of positive integers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 6 \text { and } u _ { n + 1 } = 6 u _ { n } - 5 \text {, for } n \geqslant 1 \text {. }$$ Prove by induction that \(u _ { n } = 5 \times 6 ^ { n - 1 } + 1\), for \(n \geqslant 1\).
Edexcel FP1 2009 January Q7
7. Given that \(\mathbf { X } = \left( \begin{array} { c c } 2 & a
- 1 & - 1 \end{array} \right)\), where \(a\) is a constant, and \(a \neq 2\),
  1. find \(\mathbf { X } ^ { - 1 }\) in terms of \(a\). Given that \(\mathbf { X } + \mathbf { X } ^ { - 1 } = \mathbf { I }\), where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix,
  2. find the value of \(a\).
Edexcel FP1 2009 January Q8
8. A parabola has equation \(y ^ { 2 } = 4 a x , a > 0\). The point \(Q \left( a q ^ { 2 } , 2 a q \right)\) lies on the parabola.
  1. Show that an equation of the tangent to the parabola at \(Q\) is $$y q = x + a q ^ { 2 } .$$ This tangent meets the \(y\)-axis at the point \(R\).
  2. Find an equation of the line \(l\) which passes through \(R\) and is perpendicular to the tangent at \(Q\).
  3. Show that \(l\) passes through the focus of the parabola.
  4. Find the coordinates of the point where \(l\) meets the directrix of the parabola.
Edexcel FP1 2009 January Q9
9. Given that \(z _ { 1 } = 3 + 2 i\) and \(z _ { 2 } = \frac { 12 - 5 i } { z _ { 1 } }\),
  1. find \(z _ { 2 }\) in the form \(a + i b\), where \(a\) and \(b\) are real.
  2. Show on an Argand diagram the point \(P\) representing \(z _ { 1 }\) and the point \(Q\) representing \(z _ { 2 }\).
  3. Given that \(O\) is the origin, show that \(\angle P O Q = \frac { \pi } { 2 }\). The circle passing through the points \(O , P\) and \(Q\) has centre \(C\). Find
  4. the complex number represented by C,
  5. the exact value of the radius of the circle.
Edexcel FP1 2009 January Q10
10. $$\mathbf { A } = \left( \begin{array} { c c } 3 \sqrt { } 2 & 0
0 & 3 \sqrt { } 2 \end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { c c } 0 & 1
1 & 0 \end{array} \right) , \quad \mathbf { C } = \left( \begin{array} { c c } \frac { 1 } { \sqrt { } 2 } & - \frac { 1 } { \sqrt { } 2 }
\frac { 1 } { \sqrt { } 2 } & \frac { 1 } { \sqrt { } 2 } \end{array} \right)$$
  1. Describe fully the transformations described by each of the matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\). It is given that the matrix \(\mathbf { D } = \mathbf { C A }\), and that the matrix \(\mathbf { E } = \mathbf { D B }\).
  2. Find \(\mathbf { D }\).
  3. Show that \(\mathbf { E } = \left( \begin{array} { c c } - 3 & 3
    3 & 3 \end{array} \right)\). The triangle \(O R S\) has vertices at the points with coordinates \(( 0,0 ) , ( - 15,15 )\) and \(( 4,21 )\). This triangle is transformed onto the triangle \(O R ^ { \prime } S ^ { \prime }\) by the transformation described by \(\mathbf { E }\).
  4. Find the coordinates of the vertices of triangle \(O R ^ { \prime } S ^ { \prime }\).
  5. Find the area of triangle \(O R ^ { \prime } S ^ { \prime }\) and deduce the area of triangle \(O R S\).
Edexcel FP1 2010 January Q1
  1. The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by
$$z _ { 1 } = 2 + 8 i \quad \text { and } \quad z _ { 2 } = 1 - i$$ Find, showing your working,
  1. \(\frac { Z _ { 1 } } { Z _ { 2 } }\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real,
  2. the value of \(\left| \frac { z _ { 1 } } { z _ { 2 } } \right|\),
  3. the value of \(\arg \frac { Z _ { 1 } } { Z _ { 2 } }\), giving your answer in radians to 2 decimal places.
Edexcel FP1 2010 January Q2
2. $$f ( x ) = 3 x ^ { 2 } - \frac { 11 } { x ^ { 2 } }$$
  1. Write down, to 3 decimal places, the value of \(\mathrm { f } ( 1.3 )\) and the value of \(\mathrm { f } ( 1.4 )\). The equation \(\mathrm { f } ( x ) = 0\) has a root \(\alpha\) between 1.3 and 1.4
    [0pt]
  2. Starting with the interval [1.3, 1.4], use interval bisection to find an interval of width 0.025 which contains \(\alpha\).
  3. Taking 1.4 as a first approximation to \(\alpha\), apply the Newton-Raphson procedure once to \(\mathrm { f } ( x )\) to obtain a second approximation to \(\alpha\), giving your answer to 3 decimal places.
Edexcel FP1 2010 January Q3
3. A sequence of numbers is defined by $$\begin{aligned} u _ { 1 } & = 2
u _ { n + 1 } & = 5 u _ { n } - 4 , \quad n \geqslant 1 . \end{aligned}$$ Prove by induction that, for \(n \in \mathbb { Z } ^ { + } , u _ { n } = 5 ^ { n - 1 } + 1\).
Edexcel FP1 2010 January Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cfad960a-f56a-4471-b4ad-92ab670d8121-05_791_874_265_518} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the parabola with equation \(y ^ { 2 } = 12 x\).
The point \(P\) on the parabola has \(x\)-coordinate \(\frac { 1 } { 3 }\).
The point \(S\) is the focus of the parabola.
  1. Write down the coordinates of \(S\). The points \(A\) and \(B\) lie on the directrix of the parabola.
    The point \(A\) is on the \(x\)-axis and the \(y\)-coordinate of \(B\) is positive. Given that \(A B P S\) is a trapezium,
  2. calculate the perimeter of \(A B P S\).
Edexcel FP1 2010 January Q5
5. \(\mathbf { A } = \left( \begin{array} { c c } a & - 5
2 & a + 4 \end{array} \right)\), where \(a\) is real.
  1. Find \(\operatorname { det } \mathbf { A }\) in terms of \(a\).
  2. Show that the matrix \(\mathbf { A }\) is non-singular for all values of \(a\). Given that \(a = 0\),
  3. find \(\mathbf { A } ^ { - 1 }\).