- The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by
$$z _ { 1 } = 2 + 8 i \quad \text { and } \quad z _ { 2 } = 1 - i$$
Find, showing your working,
- \(\frac { Z _ { 1 } } { Z _ { 2 } }\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real,
- the value of \(\left| \frac { z _ { 1 } } { z _ { 2 } } \right|\),
- the value of \(\arg \frac { Z _ { 1 } } { Z _ { 2 } }\), giving your answer in radians to 2 decimal places.