Edexcel FP1 — Question 8

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
TopicConic sections

8. A parabola has equation \(y ^ { 2 } = 4 a x , a > 0\). The point \(Q \left( a q ^ { 2 } , 2 a q \right)\) lies on the parabola.
  1. Show that an equation of the tangent to the parabola at \(Q\) is $$y q = x + a q ^ { 2 }$$ This tangent meets the \(y\)-axis at the point \(R\).
  2. Find an equation of the line \(l\) which passes through \(R\) and is perpendicular to the tangent at \(Q\).
  3. Show that \(l\) passes through the focus of the parabola.
  4. Find the coordinates of the point where \(I\) meets the directrix of the parabola.