Edexcel FP1 2010 January — Question 4

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJanuary
TopicConic sections

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cfad960a-f56a-4471-b4ad-92ab670d8121-05_791_874_265_518} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the parabola with equation \(y ^ { 2 } = 12 x\).
The point \(P\) on the parabola has \(x\)-coordinate \(\frac { 1 } { 3 }\).
The point \(S\) is the focus of the parabola.
  1. Write down the coordinates of \(S\). The points \(A\) and \(B\) lie on the directrix of the parabola.
    The point \(A\) is on the \(x\)-axis and the \(y\)-coordinate of \(B\) is positive. Given that \(A B P S\) is a trapezium,
  2. calculate the perimeter of \(A B P S\).