Questions — Edexcel F2 (137 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel F2 Specimen Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cd449136-cb09-49eb-8812-c863c0e7bd4e-10_506_728_267_632} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curves given by the polar equations $$r = 2 , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ and \(\quad r = 1.5 + \sin 3 \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }\).
  1. Find the coordinates of the points where the curves intersect. The region \(S\), between the curves, for which \(r > 2\) and for which \(r < ( 1.5 + \sin 3 \theta )\), is shown shaded in Figure 1.
  2. Find, by integration, the area of the shaded region \(S\), giving your answer in the form \(a \pi + b \sqrt { 3 }\), where \(a\) and \(b\) are simplified fractions. $$\left[ \begin{array} { l l l } \text { Leave }
    \text { blank }
    \text { " }
    \text { " } \end{array} &
    \text { " } &
    \text { " } &
    \text { " } &
    \text { " } &
    \text { " } &
    \text { " } &
    \text { " } &
    \text { " } & \end{array} \right.$$
Edexcel F2 Specimen Q6
  1. A complex number \(z\) is represented by the point \(P\) in the Argand diagram.
    1. Given that \(| z - 6 | = | z |\), sketch the locus of \(P\).
    2. Find the complex numbers \(z\) which satisfy both \(| z - 6 | = | z |\) and \(| z - 3 - 4 \mathrm { i } | = 5\).
    The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by \(w = \frac { 30 } { z }\).
  2. Show that \(T\) maps \(| z - 6 | = | z |\) onto a circle in the \(w\)-plane and give the cartesian equation of this circle.
Edexcel F2 Specimen Q7
  1. (a) Show that the transformation \(z = y ^ { \frac { 1 } { 2 } }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } - 4 y \tan x = 2 y ^ { \frac { 1 } { 2 } }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 2 z \tan x = 1$$ (b) Solve the differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence obtain the general solution of the differential equation (I).
$$\left[ \begin{array} { l l l } \text { Leave }
\text { blank }
\text { " }
\text { " }
\text { " } \end{array} &
\text { " } &
\text { " } &
\text { " } &
\text { " } &
\text { " } &
\text { " } &
\text { " } & \end{array} \right.$$
Edexcel F2 Specimen Q8
  1. (a) Find the value of \(\lambda\) for which \(y = \lambda x \sin 5 x\) is a particular integral of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 25 y = 3 \cos 5 x$$ (b) Using your answer to part (a), find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 25 y = 3 \cos 5 x$$ Given that at \(x = 0 , y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 5\),
(c) find the particular solution of this differential equation, giving your solution in the form \(y = \mathrm { f } ( x )\).
(d) Sketch the curve with equation \(y = \mathrm { f } ( x )\) for \(0 \leqslant x \leqslant \pi\).
Edexcel F2 2018 June Q1
  1. Use algebra to find the set of values of \(x\) for which
$$\frac { 1 } { x - 2 } > \frac { 2 } { x }$$
Edexcel F2 2018 June Q2
  1. (a) Find the general solution of the differential equation
$$\left( x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + x y - x = 0$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
(b) Find the particular solution for which \(y = 2\) when \(x = 3\)
Edexcel F2 2018 June Q3
3. $$2 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \frac { \mathrm { d } y } { \mathrm {~d} x } - x y = 1$$
  1. Show that $$\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } = \frac { 1 } { 2 } \left( a \frac { \mathrm {~d} y } { \mathrm {~d} x } + b x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + c \frac { \mathrm {~d} ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } \right)$$ where \(a , b\) and \(c\) are constants to be found. Given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 2\)
  2. find a series solution for \(y\) in ascending powers of ( \(x - 2\) ), up to and including the term in \(( x - 2 ) ^ { 4 }\). Write each term in its simplest form.
  3. Use the solution to part (b) to find an approximate value for \(y\) when \(x = 2.1\), giving your answer to 3 decimal places.
Edexcel F2 2018 June Q4
4. A complex number \(z\) is represented by the point \(P\) in an Argand diagram. Given that $$| z + i | = 1$$
  1. sketch the locus of \(P\). The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { 3 \mathrm { i } z - 2 } { z + \mathrm { i } } , \quad z \neq - \mathrm { i }$$
  2. Given that \(T\) maps \(| z + i | = 1\) to a circle \(C\) in the \(w\)-plane, find a cartesian equation of \(C\).
Edexcel F2 2018 June Q5
  1. (a) Express \(\frac { 4 r + 2 } { r ( r + 1 ) ( r + 2 ) }\) in partial fractions.
    (b) Hence, using the method of differences, prove that
$$\sum _ { r = 1 } ^ { n } \frac { 4 r + 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { n ( a n + b ) } { 2 ( n + 1 ) ( n + 2 ) }$$ where \(a\) and \(b\) are constants to be found.
Edexcel F2 2018 June Q6
  1. (a) Show that the transformation \(x = \mathrm { e } ^ { t }\) transforms the differential equation
$$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 3 y = x ^ { 2 } \quad x > 0$$ into the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 3 y = \mathrm { e } ^ { 2 t }$$ (b) Find the general solution of the differential equation (II), expressing \(y\) as a function of \(t\).
(c) Hence find the general solution of the differential equation (I).
Edexcel F2 2018 June Q7
7.(a)Use de Moivre's theorem to show that $$\cos 7 \theta \equiv 64 \cos ^ { 7 } \theta - 112 \cos ^ { 5 } \theta + 56 \cos ^ { 3 } \theta - 7 \cos \theta$$ (b)Hence find the four distinct roots of the equation $$64 x ^ { 7 } - 112 x ^ { 5 } + 56 x ^ { 3 } - 7 x + 1 = 0$$ giving your answers to 3 decimal places where necessary.
Edexcel F2 2018 June Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{27ac35ba-1969-4a37-a7c5-f4741c9c59a8-28_570_728_264_609} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curves with polar equations $$\begin{array} { l l } r = 2 \sin \theta & 0 \leqslant \theta \leqslant \pi
r = 1.5 - \sin \theta & 0 \leqslant \theta \leqslant 2 \pi \end{array}$$ The curves intersect at the points \(P\) and \(Q\).
  1. Find the polar coordinates of the point \(P\) and the polar coordinates of the point \(Q\). The region \(R\), shown shaded in Figure 1, is enclosed by the two curves.
  2. Find the exact area of \(R\), giving your answer in the form \(p \pi + q \sqrt { 3 }\), where \(p\) and \(q\) are rational numbers to be found.