| Exam Board | Edexcel |
| Module | F2 (Further Pure Mathematics 2) |
| Year | 2018 |
| Session | June |
| Topic | Complex numbers 2 |
7.(a)Use de Moivre's theorem to show that
$$\cos 7 \theta \equiv 64 \cos ^ { 7 } \theta - 112 \cos ^ { 5 } \theta + 56 \cos ^ { 3 } \theta - 7 \cos \theta$$
(b)Hence find the four distinct roots of the equation
$$64 x ^ { 7 } - 112 x ^ { 5 } + 56 x ^ { 3 } - 7 x + 1 = 0$$
giving your answers to 3 decimal places where necessary.