Edexcel F2 2018 June — Question 3

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2018
SessionJune
TopicTaylor series
TypeDifferential equation given

3. $$2 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \frac { \mathrm { d } y } { \mathrm {~d} x } - x y = 1$$
  1. Show that $$\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } = \frac { 1 } { 2 } \left( a \frac { \mathrm {~d} y } { \mathrm {~d} x } + b x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + c \frac { \mathrm {~d} ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } \right)$$ where \(a , b\) and \(c\) are constants to be found. Given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 2\)
  2. find a series solution for \(y\) in ascending powers of ( \(x - 2\) ), up to and including the term in \(( x - 2 ) ^ { 4 }\). Write each term in its simplest form.
  3. Use the solution to part (b) to find an approximate value for \(y\) when \(x = 2.1\), giving your answer to 3 decimal places.