Edexcel F2 2018 June — Question 4

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2018
SessionJune
TopicComplex Numbers Argand & Loci

4. A complex number \(z\) is represented by the point \(P\) in an Argand diagram. Given that $$| z + i | = 1$$
  1. sketch the locus of \(P\). The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { 3 \mathrm { i } z - 2 } { z + \mathrm { i } } , \quad z \neq - \mathrm { i }$$
  2. Given that \(T\) maps \(| z + i | = 1\) to a circle \(C\) in the \(w\)-plane, find a cartesian equation of \(C\).