Questions — Edexcel C4 (360 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C4 2009 June Q1
1. $$f ( x ) = \frac { 1 } { \sqrt { ( 4 + x ) } } , \quad | x | < 4$$ Find the binomial expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Give each coefficient as a simplified fraction.
(6)
Edexcel C4 2009 June Q2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c2622c33-9436-4254-a728-10ba4703a28c-03_655_1079_207_427} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the finite region \(R\) bounded by the \(x\)-axis, the \(y\)-axis and the curve with equation \(y = 3 \cos \left( \frac { x } { 3 } \right) , 0 \leqslant x \leqslant \frac { 3 \pi } { 2 }\).
The table shows corresponding values of \(x\) and \(y\) for \(y = 3 \cos \left( \frac { x } { 3 } \right)\).
\(x\)0\(\frac { 3 \pi } { 8 }\)\(\frac { 3 \pi } { 4 }\)\(\frac { 9 \pi } { 8 }\)\(\frac { 3 \pi } { 2 }\)
\(y\)32.771642.121320
  1. Complete the table above giving the missing value of \(y\) to 5 decimal places.
  2. Using the trapezium rule, with all the values of \(y\) from the completed table, find an approximation for the area of \(R\), giving your answer to 3 decimal places.
  3. Use integration to find the exact area of \(R\).
Edexcel C4 2009 June Q3
3. $$\mathrm { f } ( x ) = \frac { 4 - 2 x } { ( 2 x + 1 ) ( x + 1 ) ( x + 3 ) } = \frac { A } { 2 x + 1 } + \frac { B } { x + 1 } + \frac { C } { x + 3 }$$
  1. Find the values of the constants \(A , B\) and \(C\).
    1. Hence find \(\int f ( x ) \mathrm { d } x\).
    2. Find \(\int _ { 0 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x\) in the form \(\ln k\), where \(k\) is a constant.
Edexcel C4 2009 June Q4
4. The curve \(C\) has the equation \(y \mathrm { e } ^ { - 2 x } = 2 x + y ^ { 2 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). The point \(P\) on \(C\) has coordinates \(( 0,1 )\).
  2. Find the equation of the normal to \(C\) at \(P\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel C4 2009 June Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c2622c33-9436-4254-a728-10ba4703a28c-09_735_1222_205_358} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve with parametric equations $$x = 2 \cos 2 t , \quad y = 6 \sin t , \quad 0 \leqslant t \leqslant \frac { \pi } { 2 }$$
  1. Find the gradient of the curve at the point where \(t = \frac { \pi } { 3 }\).
  2. Find a cartesian equation of the curve in the form $$y = \mathrm { f } ( x ) , \quad - k \leqslant x \leqslant k$$ stating the value of the constant \(k\).
  3. Write down the range of \(\mathrm { f } ( x )\).
Edexcel C4 2009 June Q6
6. (a) Find \(\int \sqrt { } ( 5 - x ) \mathrm { d } x\).
(2) \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c2622c33-9436-4254-a728-10ba4703a28c-11_503_1270_370_335} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve with equation $$y = ( x - 1 ) \sqrt { } ( 5 - x ) , \quad 1 \leqslant x \leqslant 5$$ (b) (i) Using integration by parts, or otherwise, find $$\int ( x - 1 ) \sqrt { } ( 5 - x ) \mathrm { d } x$$ (ii) Hence find \(\int _ { 1 } ^ { 5 } ( x - 1 ) \sqrt { } ( 5 - x ) \mathrm { d } x\).
Edexcel C4 2009 June Q7
7. Relative to a fixed origin \(O\), the point \(A\) has position vector \(( 8 \mathbf { i } + 13 \mathbf { j } - 2 \mathbf { k } )\), the point \(B\) has position vector ( \(10 \mathbf { i } + 14 \mathbf { j } - 4 \mathbf { k }\) ), and the point \(C\) has position vector \(( 9 \mathbf { i } + 9 \mathbf { j } + 6 \mathbf { k } )\). The line \(l\) passes through the points \(A\) and \(B\).
  1. Find a vector equation for the line \(l\).
  2. Find \(| \overrightarrow { C B } |\).
  3. Find the size of the acute angle between the line segment \(C B\) and the line \(l\), giving your answer in degrees to 1 decimal place.
  4. Find the shortest distance from the point \(C\) to the line \(l\). The point \(X\) lies on \(l\). Given that the vector \(\overrightarrow { C X }\) is perpendicular to \(l\),
  5. find the area of the triangle \(C X B\), giving your answer to 3 significant figures.
Edexcel C4 2009 June Q8
8. (a) Using the identity \(\cos 2 \theta = 1 - 2 \sin ^ { 2 } \theta\), find \(\int \sin ^ { 2 } \theta \mathrm {~d} \theta\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c2622c33-9436-4254-a728-10ba4703a28c-15_516_580_383_680} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows part of the curve \(C\) with parametric equations $$x = \tan \theta , \quad y = 2 \sin 2 \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The finite shaded region \(S\) shown in Figure 4 is bounded by \(C\), the line \(x = \frac { 1 } { \sqrt { 3 } }\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
(b) Show that the volume of the solid of revolution formed is given by the integral $$k \int _ { 0 } ^ { \frac { \pi } { 6 } } \sin ^ { 2 } \theta \mathrm {~d} \theta$$ where \(k\) is a constant.
(c) Hence find the exact value for this volume, giving your answer in the form \(p \pi ^ { 2 } + q \pi \sqrt { } 3\), where \(p\) and \(q\) are constants.
Edexcel C4 2010 June Q1
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{280ae2a5-7344-4ba3-907f-235fba3fd5b3-02_684_767_274_589} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = \sqrt { } \left( 0.75 + \cos ^ { 2 } x \right)\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(y\)-axis, the \(x\)-axis and the line with equation \(x = \frac { \pi } { 3 }\).
  1. Complete the table with values of \(y\) corresponding to \(x = \frac { \pi } { 6 }\) and \(x = \frac { \pi } { 4 }\).
    \(x\)0\(\frac { \pi } { 12 }\)\(\frac { \pi } { 6 }\)\(\frac { \pi } { 4 }\)\(\frac { \pi } { 3 }\)
    \(y\)1.32291.29731
  2. Use the trapezium rule
    1. with the values of \(y\) at \(x = 0 , x = \frac { \pi } { 6 }\) and \(x = \frac { \pi } { 3 }\) to find an estimate of the area of \(R\). Give your answer to 3 decimal places.
    2. with the values of \(y\) at \(x = 0 , x = \frac { \pi } { 12 } , x = \frac { \pi } { 6 } , x = \frac { \pi } { 4 }\) and \(x = \frac { \pi } { 3 }\) to find a further estimate of the area of \(R\). Give your answer to 3 decimal places.
      (6) \section*{LU}
Edexcel C4 2010 June Q2
2. Using the substitution \(u = \cos x + 1\), or otherwise, show that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { \cos x + 1 } \sin x \mathrm {~d} x = \mathrm { e } ( \mathrm { e } - 1 )$$ (6)
Edexcel C4 2010 June Q3
3. A curve \(C\) has equation $$2 ^ { x } + y ^ { 2 } = 2 x y$$ Find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at the point on \(C\) with coordinates \(( 3,2 )\).
Edexcel C4 2010 June Q4
4. A curve \(C\) has parametric equations $$x = \sin ^ { 2 } t , \quad y = 2 \tan t , \quad 0 \leqslant t < \frac { \pi } { 2 }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\). The tangent to \(C\) at the point where \(t = \frac { \pi } { 3 }\) cuts the \(x\)-axis at the point \(P\).
  2. Find the \(x\)-coordinate of \(P\).
    \section*{LU}
Edexcel C4 2010 June Q5
5. $$\frac { 2 x ^ { 2 } + 5 x - 10 } { ( x - 1 ) ( x + 2 ) } \equiv A + \frac { B } { x - 1 } + \frac { C } { x + 2 }$$
  1. Find the values of the constants \(A , B\) and \(C\).
  2. Hence, or otherwise, expand \(\frac { 2 x ^ { 2 } + 5 x - 10 } { ( x - 1 ) ( x + 2 ) }\) in ascending powers of \(x\), as far as the term in \(x ^ { 2 }\). Give each coefficient as a simplified fraction.
Edexcel C4 2010 June Q6
6. $$f ( \theta ) = 4 \cos ^ { 2 } \theta - 3 \sin ^ { 2 } \theta$$
  1. Show that \(f ( \theta ) = \frac { 1 } { 2 } + \frac { 7 } { 2 } \cos 2 \theta\).
  2. Hence, using calculus, find the exact value of \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \theta \mathrm { f } ( \theta ) \mathrm { d } \theta\).
Edexcel C4 2010 June Q7
7. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
3
- 4 \end{array} \right) + \lambda \left( \begin{array} { l } 1
2
1 \end{array} \right)\), where \(\lambda\) is a scalar parameter. The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 0
9
- 3 \end{array} \right) + \mu \left( \begin{array} { l } 5
0
2 \end{array} \right)\), where \(\mu\) is a scalar parameter.
Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(C\), find
  1. the coordinates of \(C\). The point \(A\) is the point on \(l _ { 1 }\) where \(\lambda = 0\) and the point \(B\) is the point on \(l _ { 2 }\) where \(\mu = - 1\).
  2. Find the size of the angle \(A C B\). Give your answer in degrees to 2 decimal places.
  3. Hence, or otherwise, find the area of the triangle \(A B C\).
Edexcel C4 2010 June Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{280ae2a5-7344-4ba3-907f-235fba3fd5b3-12_474_837_283_610} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a cylindrical water tank. The diameter of a circular cross-section of the tank is 6 m . Water is flowing into the tank at a constant rate of \(0.48 \pi \mathrm {~m} ^ { 3 } \mathrm {~min} ^ { - 1 }\). At time \(t\) minutes, the depth of the water in the tank is \(h\) metres. There is a tap at a point \(T\) at the bottom of the tank. When the tap is open, water leaves the tank at a rate of \(0.6 \pi h \mathrm {~m} ^ { 3 } \mathrm {~min} ^ { - 1 }\).
  1. Show that \(t\) minutes after the tap has been opened $$75 \frac { \mathrm {~d} h } { \mathrm {~d} t } = ( 4 - 5 h )$$ When \(t = 0 , h = 0.2\)
  2. Find the value of \(t\) when \(h = 0.5\)
Edexcel C4 2011 June Q1
1. $$\frac { 9 x ^ { 2 } } { ( x - 1 ) ^ { 2 } ( 2 x + 1 ) } = \frac { A } { ( x - 1 ) } + \frac { B } { ( x - 1 ) ^ { 2 } } + \frac { C } { ( 2 x + 1 ) }$$ Find the values of the constants \(A , B\) and \(C\).
Edexcel C4 2011 June Q2
2. $$f ( x ) = \frac { 1 } { \sqrt { } \left( 9 + 4 x ^ { 2 } \right) } , \quad | x | < \frac { 3 } { 2 }$$ Find the first three non-zero terms of the binomial expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\). Give each coefficient as a simplified fraction.
Edexcel C4 2011 June Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9d513d77-b8f9-4223-832f-f566c5f50457-04_391_741_274_605} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A hollow hemispherical bowl is shown in Figure 1. Water is flowing into the bowl. When the depth of the water is \(h \mathrm {~m}\), the volume \(V \mathrm {~m} ^ { 3 }\) is given by $$V = \frac { 1 } { 12 } \pi \cdot h ^ { 2 } ( 3 - 4 h ) , \quad 0 \leqslant h \leqslant 0.25$$
  1. Find, in terms of \(\pi , \frac { \mathrm { d } V } { \mathrm {~d} h }\) when \(h = 0.1\) Water flows into the bowl at a rate of \(\frac { \pi } { 800 } \mathrm {~m} ^ { 3 } \mathrm {~s} ^ { - 1 }\).
  2. Find the rate of change of \(h\), in \(\mathrm { m } \mathrm { s } ^ { - 1 }\), when \(h = 0.1\)
Edexcel C4 2011 June Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9d513d77-b8f9-4223-832f-f566c5f50457-05_673_1058_264_443} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve with equation \(y = x ^ { 3 } \ln \left( x ^ { 2 } + 2 \right) , x \geqslant 0\).
The finite region \(R\), shown shaded in Figure 2, is bounded by the curve, the \(x\)-axis and the line \(x = \sqrt { } 2\). The table below shows corresponding values of \(x\) and \(y\) for \(y = x ^ { 3 } \ln \left( x ^ { 2 } + 2 \right)\).
\(x\)0\(\frac { \sqrt { } 2 } { 4 }\)\(\frac { \sqrt { } 2 } { 2 }\)\(\frac { 3 \sqrt { } 2 } { 4 }\)\(\sqrt { } 2\)
\(y\)00.32403.9210
  1. Complete the table above giving the missing values of \(y\) to 4 decimal places.
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(R\), giving your answer to 2 decimal places.
  3. Use the substitution \(u = x ^ { 2 } + 2\) to show that the area of \(R\) is $$\frac { 1 } { 2 } \int _ { 2 } ^ { 4 } ( u - 2 ) \ln u \mathrm {~d} u$$
  4. Hence, or otherwise, find the exact area of \(R\).
Edexcel C4 2011 June Q5
  1. Find the gradient of the curve with equation
$$\ln y = 2 x \ln x , \quad x > 0 , y > 0$$ at the point on the curve where \(x = 2\). Give your answer as an exact value.
Edexcel C4 2011 June Q6
6. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$l _ { 1 } : \quad \mathbf { r } = \left( \begin{array} { r } 6
- 3
- 2 \end{array} \right) + \lambda \left( \begin{array} { r } - 1
2
3 \end{array} \right) , \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { r } - 5
Edexcel C4 2011 June Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9d513d77-b8f9-4223-832f-f566c5f50457-10_643_999_276_475} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows part of the curve \(C\) with parametric equations $$x = \tan \theta , \quad y = \sin \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The point \(P\) lies on \(C\) and has coordinates \(\left( \sqrt { } 3 , \frac { 1 } { 2 } \sqrt { } 3 \right)\).
  1. Find the value of \(\theta\) at the point \(P\). The line \(l\) is a normal to \(C\) at \(P\). The normal cuts the \(x\)-axis at the point \(Q\).
  2. Show that \(Q\) has coordinates \(( k \sqrt { } 3,0 )\), giving the value of the constant \(k\). The finite shaded region \(S\) shown in Figure 3 is bounded by the curve \(C\), the line \(x = \sqrt { } 3\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  3. Find the volume of the solid of revolution, giving your answer in the form \(p \pi \sqrt { } 3 + q \pi ^ { 2 }\), where \(p\) and \(q\) are constants.
Edexcel C4 2011 June Q15
15
3 \end{array} \right) + \mu \left( \begin{array} { r } 2
- 3
1 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection \(A\).
  2. Find, to the nearest \(0.1 ^ { \circ }\), the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\). The point \(B\) has position vector \(\left( \begin{array} { r } 5
    - 1
    1 \end{array} \right)\).
  3. Show that \(B\) lies on \(l _ { 1 }\).
  4. Find the shortest distance from \(B\) to the line \(l _ { 2 }\), giving your answer to 3 significant figures.
    7. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9d513d77-b8f9-4223-832f-f566c5f50457-10_643_999_276_475} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} Figure 3 shows part of the curve \(C\) with parametric equations $$x = \tan \theta , \quad y = \sin \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The point \(P\) lies on \(C\) and has coordinates \(\left( \sqrt { } 3 , \frac { 1 } { 2 } \sqrt { } 3 \right)\).
  5. Find the value of \(\theta\) at the point \(P\). The line \(l\) is a normal to \(C\) at \(P\). The normal cuts the \(x\)-axis at the point \(Q\).
  6. Show that \(Q\) has coordinates \(( k \sqrt { } 3,0 )\), giving the value of the constant \(k\). The finite shaded region \(S\) shown in Figure 3 is bounded by the curve \(C\), the line \(x = \sqrt { } 3\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  7. Find the volume of the solid of revolution, giving your answer in the form \(p \pi \sqrt { } 3 + q \pi ^ { 2 }\), where \(p\) and \(q\) are constants. 8. (a) Find \(\int ( 4 y + 3 ) ^ { - \frac { 1 } { 2 } } \mathrm {~d} y\)
  8. Given that \(y = 1.5\) at \(x = - 2\), solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \sqrt { } ( 4 y + 3 ) } { x ^ { 2 } }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
Edexcel C4 2012 June Q1
1. $$\mathrm { f } ( x ) = \frac { 1 } { x ( 3 x - 1 ) ^ { 2 } } = \frac { A } { x } + \frac { B } { ( 3 x - 1 ) } + \frac { C } { ( 3 x - 1 ) ^ { 2 } }$$
  1. Find the values of the constants \(A , B\) and \(C\).
    1. Hence find \(\int \mathrm { f } ( x ) \mathrm { d } x\).
    2. Find \(\int _ { 1 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x\), leaving your answer in the form \(a + \ln b\), where \(a\) and \(b\) are constants. 1
      \(f ( x ) = \frac { 1 } { x ( 3 x - 1 ) ^ { 2 } } = \frac { A } { x } + \frac { } { ( 3 x }\)
  2. Find the values of the constants \(A , B\) and \(C\).