8. (a) Using the identity \(\cos 2 \theta = 1 - 2 \sin ^ { 2 } \theta\), find \(\int \sin ^ { 2 } \theta \mathrm {~d} \theta\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c2622c33-9436-4254-a728-10ba4703a28c-15_516_580_383_680}
\captionsetup{labelformat=empty}
\caption{Figure 4}
\end{figure}
Figure 4 shows part of the curve \(C\) with parametric equations
$$x = \tan \theta , \quad y = 2 \sin 2 \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$
The finite shaded region \(S\) shown in Figure 4 is bounded by \(C\), the line \(x = \frac { 1 } { \sqrt { 3 } }\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
(b) Show that the volume of the solid of revolution formed is given by the integral
$$k \int _ { 0 } ^ { \frac { \pi } { 6 } } \sin ^ { 2 } \theta \mathrm {~d} \theta$$
where \(k\) is a constant.
(c) Hence find the exact value for this volume, giving your answer in the form \(p \pi ^ { 2 } + q \pi \sqrt { } 3\), where \(p\) and \(q\) are constants.