Edexcel C4 2010 June — Question 1

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2010
SessionJune
TopicArea Under & Between Curves

1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{280ae2a5-7344-4ba3-907f-235fba3fd5b3-02_684_767_274_589} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = \sqrt { } \left( 0.75 + \cos ^ { 2 } x \right)\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(y\)-axis, the \(x\)-axis and the line with equation \(x = \frac { \pi } { 3 }\).
  1. Complete the table with values of \(y\) corresponding to \(x = \frac { \pi } { 6 }\) and \(x = \frac { \pi } { 4 }\).
    \(x\)0\(\frac { \pi } { 12 }\)\(\frac { \pi } { 6 }\)\(\frac { \pi } { 4 }\)\(\frac { \pi } { 3 }\)
    \(y\)1.32291.29731
  2. Use the trapezium rule
    1. with the values of \(y\) at \(x = 0 , x = \frac { \pi } { 6 }\) and \(x = \frac { \pi } { 3 }\) to find an estimate of the area of \(R\). Give your answer to 3 decimal places.
    2. with the values of \(y\) at \(x = 0 , x = \frac { \pi } { 12 } , x = \frac { \pi } { 6 } , x = \frac { \pi } { 4 }\) and \(x = \frac { \pi } { 3 }\) to find a further estimate of the area of \(R\). Give your answer to 3 decimal places.
      (6) \section*{LU}