Questions — CAIE (7659 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2019 June Q10
10 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have equations $$y = \frac { a x } { x + 5 } \quad \text { and } \quad y = \frac { x ^ { 2 } + ( a + 10 ) x + 5 a + 26 } { x + 5 }$$ respectively, where \(a\) is a constant and \(a > 2\).
  1. Find the equations of the asymptotes of \(C _ { 1 }\).
  2. Find the equation of the oblique asymptote of \(C _ { 2 }\).
  3. Show that \(C _ { 1 }\) and \(C _ { 2 }\) do not intersect.
  4. Find the coordinates of the stationary points of \(C _ { 2 }\).
  5. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on a single diagram. [You do not need to calculate the coordinates of any points where \(C _ { 2 }\) crosses the axes.]
CAIE FP1 2019 June Q11 EITHER
The curve \(C _ { 1 }\) has polar equation \(r ^ { 2 } = 2 \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. The point on \(C _ { 1 }\) furthest from the line \(\theta = \frac { 1 } { 2 } \pi\) is denoted by \(P\). Show that, at \(P\), $$2 \theta \tan \theta = 1$$ and verify that this equation has a root between 0.6 and 0.7 .
    The curve \(C _ { 2 }\) has polar equation \(r ^ { 2 } = \theta \sec ^ { 2 } \theta\), for \(0 \leqslant \theta < \frac { 1 } { 2 } \pi\). The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the pole, denoted by \(O\), and at another point \(Q\).
  2. Find the exact value of \(\theta\) at \(Q\).
  3. The diagram below shows the curve \(C _ { 2 }\). Sketch \(C _ { 1 }\) on this diagram.
  4. Find, in exact form, the area of the region \(O P Q\) enclosed by \(C _ { 1 }\) and \(C _ { 2 }\).
CAIE FP1 2019 June Q11 OR
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\mathbf { M } = \left( \begin{array} { r r r r } - 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & - 1 \\ 1 & - 2 & - 3 & a \\ 1 & 2 & 5 & 2 \end{array} \right) .$$
  1. For \(a \neq - 4\), the range space of T is denoted by \(V\).
    (a) Find the dimension of \(V\) and show that $$\left( \begin{array} { r } - 1 \\ 1 \\ 1 \\ 1 \end{array} \right) , \quad \left( \begin{array} { r } 2 \\ 0 \\ - 2 \\ 2 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } 4 \\ - 1 \\ a \\ 2 \end{array} \right)$$ form a basis for \(V\).
    (b) Show that if \(\left( \begin{array} { l } x \\ y \\ z \\ t \end{array} \right)\) belongs to \(V\) then \(x + 2 y = t\).
  2. For \(a = - 4\), find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { r } - 1 \\ 1 \\ 1 \\ 1 \end{array} \right)$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2011 November Q1
1 The equation \(x ^ { 3 } + p x + q = 0\) has a repeated root. Prove that \(4 p ^ { 3 } + 27 q ^ { 2 } = 0\).
CAIE FP1 2011 November Q2
2 The position vectors of points \(A , B , C\), relative to the origin \(O\), are \(\mathbf { a } , \mathbf { b } , \mathbf { c }\), where $$\mathbf { a } = 3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k } , \quad \mathbf { b } = 4 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k } , \quad \mathbf { c } = 3 \mathbf { i } - \mathbf { j } - \mathbf { k }$$ Find \(\mathbf { a } \times \mathbf { b }\) and deduce the area of the triangle \(O A B\). Hence find the volume of the tetrahedron \(O A B C\), given that the volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × perpendicular height.
CAIE FP1 2011 November Q3
3 Prove by mathematical induction that, for all positive integers \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x } \sin x \right) = 2 ^ { \frac { 1 } { 2 } n } \mathrm { e } ^ { x } \sin \left( x + \frac { 1 } { 4 } n \pi \right)$$
CAIE FP1 2011 November Q4
4 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 3 & 4 & 2 & 5 \\ 6 & 7 & 5 & 8 \\ 9 & 9 & 9 & 9 \\ 15 & 16 & 14 & 17 \end{array} \right)$$ Find
  1. the rank of \(\mathbf { M }\) and a basis for the range space of T ,
  2. a basis for the null space of T .
CAIE FP1 2011 November Q5
5 The point \(P ( 2,1 )\) lies on the curve with equation $$x ^ { 3 } - 2 y ^ { 3 } = 3 x y$$ Find
  1. the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at \(P\),
  2. the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(P\).
CAIE FP1 2011 November Q6
6 Let \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } ( 1 - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), for \(n \geqslant 0\). Show that, for \(n \geqslant 1\), $$( 3 + 2 n ) I _ { n } = 2 n I _ { n - 1 }$$ Hence find the exact value of \(I _ { 3 }\).
CAIE FP1 2011 November Q7
7 The curve \(C\) has equation \(y = \frac { x ^ { 2 } + p x + 1 } { x - 2 }\), where \(p\) is a constant. Given that \(C\) has two asymptotes, find the equation of each asymptote. Find the set of values of \(p\) for which \(C\) has two distinct turning points. Sketch \(C\) in the case \(p = - 1\). Your sketch should indicate the coordinates of any intersections with the axes, but need not show the coordinates of any turning points.
CAIE FP1 2011 November Q8
8 The vector \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\), and is also an eigenvector of the matrix \(\mathbf { B }\), with corresponding eigenvalue \(\mu\). Show that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A B }\) with corresponding eigenvalue \(\lambda \mu\). State the eigenvalues of the matrix \(\mathbf { C }\), where $$\mathbf { C } = \left( \begin{array} { r r r } - 1 & - 1 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{array} \right) ,$$ and find corresponding eigenvectors. Show that \(\left( \begin{array} { l } 1 \\ 6 \\ 3 \end{array} \right)\) is an eigenvector of the matrix \(\mathbf { D }\), where $$\mathbf { D } = \left( \begin{array} { r r r } 1 & - 1 & 1 \\ - 6 & - 3 & 4 \\ - 9 & - 3 & 7 \end{array} \right) ,$$ and state the corresponding eigenvalue. Hence state an eigenvector of the matrix CD and give the corresponding eigenvalue.
CAIE FP1 2011 November Q9
9 The curve \(C\) has equation \(y = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) for \(0 \leqslant x \leqslant \ln 5\). Find
  1. the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \ln 5\),
  2. the arc length of \(C\),
  3. the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2011 November Q10
10 The curve \(C\) has polar equation \(r = 3 + 2 \cos \theta\), for \(- \pi < \theta \leqslant \pi\). The straight line \(l\) has polar equation \(r \cos \theta = 2\). Sketch both \(C\) and \(l\) on a single diagram. Find the polar coordinates of the points of intersection of \(C\) and \(l\). The region \(R\) is enclosed by \(C\) and \(l\), and contains the pole. Find the area of \(R\).
CAIE FP1 2011 November Q11 EITHER
Let \(\omega = \cos \frac { 1 } { 5 } \pi + \mathrm { i } \sin \frac { 1 } { 5 } \pi\). Show that \(\omega ^ { 5 } + 1 = 0\) and deduce that $$\omega ^ { 4 } - \omega ^ { 3 } + \omega ^ { 2 } - \omega = - 1$$ Show further that $$\omega - \omega ^ { 4 } = 2 \cos \frac { 1 } { 5 } \pi \quad \text { and } \quad \omega ^ { 3 } - \omega ^ { 2 } = 2 \cos \frac { 3 } { 5 } \pi$$ Hence find the values of $$\cos \frac { 1 } { 5 } \pi + \cos \frac { 3 } { 5 } \pi \quad \text { and } \quad \cos \frac { 1 } { 5 } \pi \cos \frac { 3 } { 5 } \pi$$ Find a quadratic equation having roots \(\cos \frac { 1 } { 5 } \pi\) and \(\cos \frac { 3 } { 5 } \pi\) and deduce the exact value of \(\cos \frac { 1 } { 5 } \pi\).
CAIE FP1 2011 November Q11 OR
Given that $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x ( 1 + x ) \frac { \mathrm { d } y } { \mathrm {~d} x } + 2 \left( 1 + 4 x + 2 x ^ { 2 } \right) y = 8 x ^ { 2 }$$ and that \(x ^ { 2 } y = z\), show that $$\frac { \mathrm { d } ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} z } { \mathrm {~d} x } + 4 z = 8 x ^ { 2 }$$ Find the general solution for \(y\) in terms of \(x\). Describe the behaviour of \(y\) as \(x \rightarrow \infty\).
CAIE FP1 2014 November Q1
1 Given that $$u _ { k } = \frac { 1 } { \sqrt { } ( 2 k - 1 ) } - \frac { 1 } { \sqrt { } ( 2 k + 1 ) }$$ express \(\sum _ { k = 13 } ^ { n } u _ { k }\) in terms of \(n\). Deduce the value of \(\sum _ { k = 13 } ^ { \infty } u _ { k }\).
CAIE FP1 2014 November Q2
2 A curve \(C\) has parametric equations $$x = \mathrm { e } ^ { t } \cos t , \quad y = \mathrm { e } ^ { t } \sin t , \quad \text { for } 0 \leqslant t \leqslant \frac { 1 } { 2 } \pi$$ Find the arc length of \(C\).
CAIE FP1 2014 November Q3
3 It is given that \(u _ { r } = r \times r !\) for \(r = 1,2,3 , \ldots\). Let \(S _ { n } = u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots + u _ { n }\). Write down the values of $$2 ! - S _ { 1 } , \quad 3 ! - S _ { 2 } , \quad 4 ! - S _ { 3 } , \quad 5 ! - S _ { 4 }$$ Conjecture a formula for \(S _ { n }\). Prove, by mathematical induction, a formula for \(S _ { n }\), for all positive integers \(n\).
CAIE FP1 2014 November Q4
4 A curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } + x - 1 } { x - 1 }\). Find the equations of the asymptotes of \(C\). Show that there is no point on \(C\) for which \(1 < y < 9\).
CAIE FP1 2014 November Q5
5 Find the value of \(a\) for which the system of equations $$\begin{aligned} & x - y + 2 z = 4 \\ & x + a y - 3 z = b \\ & x - y + 7 z = 13 \end{aligned}$$ where \(a\) and \(b\) are constants, has no unique solution. Taking \(a\) as the value just found,
  1. find the general solution in the case \(b = - 5\),
  2. interpret the situation geometrically in the case \(b \neq - 5\).
CAIE FP1 2014 November Q6
6 Use de Moivre's theorem to show that $$\cos 5 \theta \equiv \cos \theta \left( 16 \sin ^ { 4 } \theta - 12 \sin ^ { 2 } \theta + 1 \right)$$ By considering the equation \(\cos 5 \theta = 0\), show that the exact value of \(\sin ^ { 2 } \left( \frac { 1 } { 10 } \pi \right)\) is \(\frac { 3 - \sqrt { 5 } } { 8 }\).
CAIE FP1 2014 November Q7
7 Let \(I _ { n } = \int _ { 0 } ^ { 1 } ( 1 - x ) ^ { n } \mathrm { e } ^ { x } \mathrm {~d} x\). Show that, for all positive integers \(n\), $$I _ { n } = n I _ { n - 1 } - 1$$ Find the exact value of \(I _ { 4 }\). By considering the area of the region enclosed by the \(x\)-axis, the \(y\)-axis and the curve with equation \(y = ( 1 - x ) ^ { 4 } \mathrm { e } ^ { x }\) in the interval \(0 \leqslant x \leqslant 1\), show that $$\frac { 65 } { 24 } < \mathrm { e } < \frac { 11 } { 4 }$$
CAIE FP1 2014 November Q8
8 A circle has polar equation \(r = a\), for \(0 \leqslant \theta < 2 \pi\), and a cardioid has polar equation \(r = a ( 1 - \cos \theta )\), for \(0 \leqslant \theta < 2 \pi\), where \(a\) is a positive constant. Draw sketches of the circle and the cardioid on the same diagram. Write down the polar coordinates of the points of intersection of the circle and the cardioid. Show that the area of the region that is both inside the circle and inside the cardioid is $$\left( \frac { 5 } { 4 } \pi - 2 \right) a ^ { 2 }$$
CAIE FP1 2014 November Q9
9 Given that $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + ( 2 x + 2 ) \frac { \mathrm { d } y } { \mathrm {~d} x } + ( 2 - 3 x ) y = 10 \mathrm { e } ^ { 2 x }$$ and that \(v = x y\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} v } { \mathrm {~d} x } - 3 v = 10 \mathrm { e } ^ { 2 x }$$ Find the general solution for \(y\) in terms of \(x\).
CAIE FP1 2014 November Q10
10 The line \(l _ { 1 }\) is parallel to the vector \(\mathbf { i } - 2 \mathbf { j } - 3 \mathbf { k }\) and passes through the point \(A\), whose position vector is \(3 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k }\). The line \(l _ { 2 }\) is parallel to the vector \(- 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }\) and passes through the point \(B\), whose position vector is \(- 3 \mathbf { i } - \mathbf { j } + 2 \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find
  1. the length \(P Q\),
  2. the cartesian equation of the plane \(\Pi\) containing \(P Q\) and \(l _ { 2 }\),
  3. the perpendicular distance of \(A\) from \(\Pi\).