CAIE FP1 2019 June — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicInvariant lines and eigenvalues and vectors

10 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have equations $$y = \frac { a x } { x + 5 } \quad \text { and } \quad y = \frac { x ^ { 2 } + ( a + 10 ) x + 5 a + 26 } { x + 5 }$$ respectively, where \(a\) is a constant and \(a > 2\).
  1. Find the equations of the asymptotes of \(C _ { 1 }\).
  2. Find the equation of the oblique asymptote of \(C _ { 2 }\).
  3. Show that \(C _ { 1 }\) and \(C _ { 2 }\) do not intersect.
  4. Find the coordinates of the stationary points of \(C _ { 2 }\).
  5. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on a single diagram. [You do not need to calculate the coordinates of any points where \(C _ { 2 }\) crosses the axes.]

10 The curves $C _ { 1 }$ and $C _ { 2 }$ have equations

$$y = \frac { a x } { x + 5 } \quad \text { and } \quad y = \frac { x ^ { 2 } + ( a + 10 ) x + 5 a + 26 } { x + 5 }$$

respectively, where $a$ is a constant and $a > 2$.\\
(i) Find the equations of the asymptotes of $C _ { 1 }$.\\

(ii) Find the equation of the oblique asymptote of $C _ { 2 }$.\\

(iii) Show that $C _ { 1 }$ and $C _ { 2 }$ do not intersect.\\

(iv) Find the coordinates of the stationary points of $C _ { 2 }$.\\

(v) Sketch $C _ { 1 }$ and $C _ { 2 }$ on a single diagram. [You do not need to calculate the coordinates of any points where $C _ { 2 }$ crosses the axes.]

\hfill \mbox{\textit{CAIE FP1 2019 Q10}}