CAIE FP1 2011 November — Question 6

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicIntegration by Parts

6 Let \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } ( 1 - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), for \(n \geqslant 0\). Show that, for \(n \geqslant 1\), $$( 3 + 2 n ) I _ { n } = 2 n I _ { n - 1 }$$ Hence find the exact value of \(I _ { 3 }\).

6 Let $I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } ( 1 - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x$, for $n \geqslant 0$. Show that, for $n \geqslant 1$,

$$( 3 + 2 n ) I _ { n } = 2 n I _ { n - 1 }$$

Hence find the exact value of $I _ { 3 }$.

\hfill \mbox{\textit{CAIE FP1 2011 Q6}}