CAIE FP1 2014 November — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2014
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicVectors: Lines & Planes

10 The line \(l _ { 1 }\) is parallel to the vector \(\mathbf { i } - 2 \mathbf { j } - 3 \mathbf { k }\) and passes through the point \(A\), whose position vector is \(3 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k }\). The line \(l _ { 2 }\) is parallel to the vector \(- 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }\) and passes through the point \(B\), whose position vector is \(- 3 \mathbf { i } - \mathbf { j } + 2 \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find
  1. the length \(P Q\),
  2. the cartesian equation of the plane \(\Pi\) containing \(P Q\) and \(l _ { 2 }\),
  3. the perpendicular distance of \(A\) from \(\Pi\).

10 The line $l _ { 1 }$ is parallel to the vector $\mathbf { i } - 2 \mathbf { j } - 3 \mathbf { k }$ and passes through the point $A$, whose position vector is $3 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k }$. The line $l _ { 2 }$ is parallel to the vector $- 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }$ and passes through the point $B$, whose position vector is $- 3 \mathbf { i } - \mathbf { j } + 2 \mathbf { k }$. The point $P$ on $l _ { 1 }$ and the point $Q$ on $l _ { 2 }$ are such that $P Q$ is perpendicular to both $l _ { 1 }$ and $l _ { 2 }$. Find\\
(i) the length $P Q$,\\
(ii) the cartesian equation of the plane $\Pi$ containing $P Q$ and $l _ { 2 }$,\\
(iii) the perpendicular distance of $A$ from $\Pi$.

\hfill \mbox{\textit{CAIE FP1 2014 Q10}}