CAIE FP1 2019 June — Question 11 OR

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
Topic3x3 Matrices

The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\mathbf { M } = \left( \begin{array} { r r r r } - 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & - 1 \\ 1 & - 2 & - 3 & a \\ 1 & 2 & 5 & 2 \end{array} \right) .$$
  1. For \(a \neq - 4\), the range space of T is denoted by \(V\).
    (a) Find the dimension of \(V\) and show that $$\left( \begin{array} { r } - 1 \\ 1 \\ 1 \\ 1 \end{array} \right) , \quad \left( \begin{array} { r } 2 \\ 0 \\ - 2 \\ 2 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } 4 \\ - 1 \\ a \\ 2 \end{array} \right)$$ form a basis for \(V\).
    (b) Show that if \(\left( \begin{array} { l } x \\ y \\ z \\ t \end{array} \right)\) belongs to \(V\) then \(x + 2 y = t\).
  2. For \(a = - 4\), find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { r } - 1 \\ 1 \\ 1 \\ 1 \end{array} \right)$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

The linear transformation $\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }$ is represented by the matrix

$$\mathbf { M } = \left( \begin{array} { r r r r } 
- 1 & 2 & 3 & 4 \\
1 & 0 & 1 & - 1 \\
1 & - 2 & - 3 & a \\
1 & 2 & 5 & 2
\end{array} \right) .$$

(i) For $a \neq - 4$, the range space of T is denoted by $V$.\\
(a) Find the dimension of $V$ and show that

$$\left( \begin{array} { r } 
- 1 \\
1 \\
1 \\
1
\end{array} \right) , \quad \left( \begin{array} { r } 
2 \\
0 \\
- 2 \\
2
\end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } 
4 \\
- 1 \\
a \\
2
\end{array} \right)$$

form a basis for $V$.\\

(b) Show that if $\left( \begin{array} { l } x \\ y \\ z \\ t \end{array} \right)$ belongs to $V$ then $x + 2 y = t$.\\

(ii) For $a = - 4$, find the general solution of

$$\mathbf { M } \mathbf { x } = \left( \begin{array} { r } 
- 1 \\
1 \\
1 \\
1
\end{array} \right)$$

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.\\

\hfill \mbox{\textit{CAIE FP1 2019 Q11 OR}}