6 Use de Moivre's theorem to show that
$$\cos 5 \theta \equiv \cos \theta \left( 16 \sin ^ { 4 } \theta - 12 \sin ^ { 2 } \theta + 1 \right)$$
By considering the equation \(\cos 5 \theta = 0\), show that the exact value of \(\sin ^ { 2 } \left( \frac { 1 } { 10 } \pi \right)\) is \(\frac { 3 - \sqrt { 5 } } { 8 }\).
Show LaTeX source
6 Use de Moivre's theorem to show that
$$\cos 5 \theta \equiv \cos \theta \left( 16 \sin ^ { 4 } \theta - 12 \sin ^ { 2 } \theta + 1 \right)$$
By considering the equation $\cos 5 \theta = 0$, show that the exact value of $\sin ^ { 2 } \left( \frac { 1 } { 10 } \pi \right)$ is $\frac { 3 - \sqrt { 5 } } { 8 }$.
\hfill \mbox{\textit{CAIE FP1 2014 Q6}}