Questions — CAIE P3 (1070 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE P3 2012 June Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{d3f0b201-3004-497a-9b29-30c94d0bec5b-2_300_767_518_689} In the diagram, \(A B C\) is a triangle in which angle \(A B C\) is a right angle and \(B C = a\). A circular arc, with centre \(C\) and radius \(a\), joins \(B\) and the point \(M\) on \(A C\). The angle \(A C B\) is \(\theta\) radians. The area of the sector \(C M B\) is equal to one third of the area of the triangle \(A B C\).
  1. Show that \(\theta\) satisfies the equation $$\tan \theta = 3 \theta .$$
  2. This equation has one root in the interval \(0 < \theta < \frac { 1 } { 2 } \pi\). Use the iterative formula $$\theta _ { n + 1 } = \tan ^ { - 1 } \left( 3 \theta _ { n } \right)$$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P3 2012 June Q3
3 Expand \(\sqrt { } \left( \frac { 1 - x } { 1 + x } \right)\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\), simplifying the coefficients.
CAIE P3 2012 June Q4
4 Solve the equation $$\operatorname { cosec } 2 \theta = \sec \theta + \cot \theta$$ giving all solutions in the interval \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
CAIE P3 2012 June Q5
5 The variables \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { e } ^ { 2 x + y }$$ and \(y = 0\) when \(x = 0\). Solve the differential equation, obtaining an expression for \(y\) in terms of \(x\).
CAIE P3 2012 June Q6
6 The equation of a curve is \(y = 3 \sin x + 4 \cos ^ { 3 } x\).
  1. Find the \(x\)-coordinates of the stationary points of the curve in the interval \(0 < x < \pi\).
  2. Determine the nature of the stationary point in this interval for which \(x\) is least.
CAIE P3 2012 June Q8
8 Let \(I = \int _ { 2 } ^ { 5 } \frac { 5 } { x + \sqrt { } ( 6 - x ) } \mathrm { d } x\).
  1. Using the substitution \(u = \sqrt { } ( 6 - x )\), show that $$I = \int _ { 1 } ^ { 2 } \frac { 10 u } { ( 3 - u ) ( 2 + u ) } \mathrm { d } u$$
  2. Hence show that \(I = 2 \ln \left( \frac { 9 } { 2 } \right)\).
CAIE P3 2012 June Q9
9
\includegraphics[max width=\textwidth, alt={}, center]{d3f0b201-3004-497a-9b29-30c94d0bec5b-3_421_767_1567_689} The diagram shows the curve \(y = x ^ { \frac { 1 } { 2 } } \ln x\). The shaded region between the curve, the \(x\)-axis and the line \(x = \mathrm { e }\) is denoted by \(R\).
  1. Find the equation of the tangent to the curve at the point where \(x = 1\), giving your answer in the form \(y = m x + c\).
  2. Find by integration the volume of the solid obtained when the region \(R\) is rotated completely about the \(x\)-axis. Give your answer in terms of \(\pi\) and e.
CAIE P3 2012 June Q10
10 Two planes, \(m\) and \(n\), have equations \(x + 2 y - 2 z = 1\) and \(2 x - 2 y + z = 7\) respectively. The line \(l\) has equation \(\mathbf { r } = \mathbf { i } + \mathbf { j } - \mathbf { k } + \lambda ( 2 \mathbf { i } + \mathbf { j } + 2 \mathbf { k } )\).
  1. Show that \(l\) is parallel to \(m\).
  2. Find the position vector of the point of intersection of \(l\) and \(n\).
  3. A point \(P\) lying on \(l\) is such that its perpendicular distances from \(m\) and \(n\) are equal. Find the position vectors of the two possible positions for \(P\) and calculate the distance between them.
    [0pt] [The perpendicular distance of a point with position vector \(x _ { 1 } \mathbf { i } + y _ { 1 } \mathbf { j } + z _ { 1 } \mathbf { k }\) from the plane \(a x + b y + c z = d\) is \(\frac { \left| a x _ { 1 } + b y _ { 1 } + c z _ { 1 } - d \right| } { \sqrt { } \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } \right) }\).] \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE P3 2012 June Q1
1 Expand \(\frac { 1 } { \sqrt { } ( 4 + 3 x ) }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\), simplifying the coefficients.
CAIE P3 2012 June Q2
2 Solve the equation \(\ln ( 2 x + 3 ) = 2 \ln x + \ln 3\), giving your answer correct to 3 significant figures.
CAIE P3 2012 June Q3
3 The parametric equations of a curve are $$x = \sin 2 \theta - \theta , \quad y = \cos 2 \theta + 2 \sin \theta$$ Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 \cos \theta } { 1 + 2 \sin \theta }\).
CAIE P3 2012 June Q4
4 The curve with equation \(y = \frac { \mathrm { e } ^ { 2 x } } { x ^ { 3 } }\) has one stationary point.
  1. Find the \(x\)-coordinate of this point.
  2. Determine whether this point is a maximum or a minimum point.
CAIE P3 2012 June Q5
5 In a certain chemical process a substance \(A\) reacts with another substance \(B\). The masses in grams of \(A\) and \(B\) present at time \(t\) seconds after the start of the process are \(x\) and \(y\) respectively. It is given that \(\frac { \mathrm { d } y } { \mathrm {~d} t } = - 0.6 x y\) and \(x = 5 \mathrm { e } ^ { - 3 t }\). When \(t = 0 , y = 70\).
  1. Form a differential equation in \(y\) and \(t\). Solve this differential equation and obtain an expression for \(y\) in terms of \(t\).
  2. The percentage of the initial mass of \(B\) remaining at time \(t\) is denoted by \(p\). Find the exact value approached by \(p\) as \(t\) becomes large.
CAIE P3 2012 June Q6
6 It is given that \(\tan 3 x = k \tan x\), where \(k\) is a constant and \(\tan x \neq 0\).
  1. By first expanding \(\tan ( 2 x + x )\), show that $$( 3 k - 1 ) \tan ^ { 2 } x = k - 3$$
  2. Hence solve the equation \(\tan 3 x = k \tan x\) when \(k = 4\), giving all solutions in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\).
  3. Show that the equation \(\tan 3 x = k \tan x\) has no root in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\) when \(k = 2\).
CAIE P3 2012 June Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{e2cc23d2-f3ac-488b-97e1-79e2a98a87ba-3_421_885_251_628} The diagram shows part of the curve \(y = \cos ( \sqrt { } x )\) for \(x \geqslant 0\), where \(x\) is in radians. The shaded region between the curve, the axes and the line \(x = p ^ { 2 }\), where \(p > 0\), is denoted by \(R\). The area of \(R\) is equal to 1 .
  1. Use the substitution \(x = u ^ { 2 }\) to find \(\int _ { 0 } ^ { p ^ { 2 } } \cos ( \sqrt { } x ) \mathrm { d } x\). Hence show that \(\sin p = \frac { 3 - 2 \cos p } { 2 p }\).
  2. Use the iterative formula \(p _ { n + 1 } = \sin ^ { - 1 } \left( \frac { 3 - 2 \cos p _ { n } } { 2 p _ { n } } \right)\), with initial value \(p _ { 1 } = 1\), to find the value of \(p\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P3 2012 June Q8
8 Let \(\mathrm { f } ( x ) = \frac { 4 x ^ { 2 } - 7 x - 1 } { ( x + 1 ) ( 2 x - 3 ) }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Show that \(\int _ { 2 } ^ { 6 } \mathrm { f } ( x ) \mathrm { d } x = 8 - \ln \left( \frac { 49 } { 3 } \right)\).
CAIE P3 2012 June Q10
10
  1. The complex numbers \(u\) and \(w\) satisfy the equations $$u - w = 4 \mathrm { i } \quad \text { and } \quad u w = 5$$ Solve the equations for \(u\) and \(w\), giving all answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
    1. On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities \(| z - 2 + 2 \mathrm { i } | \leqslant 2 , \arg z \leqslant - \frac { 1 } { 4 } \pi\) and \(\operatorname { Re } z \geqslant 1\), where \(\operatorname { Re } z\) denotes the real part of \(z\).
    2. Calculate the greatest possible value of \(\operatorname { Re } z\) for points lying in the shaded region.
CAIE P3 2013 June Q1
1 Find the quotient and remainder when \(2 x ^ { 2 }\) is divided by \(x + 2\).
CAIE P3 2013 June Q2
2 Expand \(\frac { 1 + 3 x } { \sqrt { } ( 1 + 2 x ) }\) in ascending powers of \(x\) up to and including the term in \(x ^ { 2 }\), simplifying the coefficients.
CAIE P3 2013 June Q3
3 Express \(\frac { 7 x ^ { 2 } - 3 x + 2 } { x \left( x ^ { 2 } + 1 \right) }\) in partial fractions.
CAIE P3 2013 June Q4
4
  1. Solve the equation \(| 4 x - 1 | = | x - 3 |\).
  2. Hence solve the equation \(\left| 4 ^ { y + 1 } - 1 \right| = \left| 4 ^ { y } - 3 \right|\) correct to 3 significant figures.
CAIE P3 2013 June Q5
5 For each of the following curves, find the gradient at the point where the curve crosses the \(y\)-axis:
  1. \(y = \frac { 1 + x ^ { 2 } } { 1 + \mathrm { e } ^ { 2 x } }\);
  2. \(2 x ^ { 3 } + 5 x y + y ^ { 3 } = 8\).
CAIE P3 2013 June Q6
6 The points \(P\) and \(Q\) have position vectors, relative to the origin \(O\), given by $$\overrightarrow { O P } = 7 \mathbf { i } + 7 \mathbf { j } - 5 \mathbf { k } \quad \text { and } \quad \overrightarrow { O Q } = - 5 \mathbf { i } + \mathbf { j } + \mathbf { k }$$ The mid-point of \(P Q\) is the point \(A\). The plane \(\Pi\) is perpendicular to the line \(P Q\) and passes through \(A\).
  1. Find the equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
  2. The straight line through \(P\) parallel to the \(x\)-axis meets \(\Pi\) at the point \(B\). Find the distance \(A B\), correct to 3 significant figures.
CAIE P3 2013 June Q7
7
  1. Without using a calculator, solve the equation $$3 w + 2 \mathrm { i } w ^ { * } = 17 + 8 \mathrm { i }$$ where \(w ^ { * }\) denotes the complex conjugate of \(w\). Give your answer in the form \(a + b \mathrm { i }\).
  2. In an Argand diagram, the loci $$\arg ( z - 2 \mathrm { i } ) = \frac { 1 } { 6 } \pi \quad \text { and } \quad | z - 3 | = | z - 3 \mathrm { i } |$$ intersect at the point \(P\). Express the complex number represented by \(P\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), giving the exact value of \(\theta\) and the value of \(r\) correct to 3 significant figures.
CAIE P3 2013 June Q8
8
  1. Show that \(\int _ { 2 } ^ { 4 } 4 x \ln x \mathrm {~d} x = 56 \ln 2 - 12\).
  2. Use the substitution \(u = \sin 4 x\) to find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 24 } \pi } \cos ^ { 3 } 4 x \mathrm {~d} x\).