CAIE P3 2012 June — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2012
SessionJune
TopicComplex Numbers Argand & Loci

10
  1. The complex numbers \(u\) and \(w\) satisfy the equations $$u - w = 4 \mathrm { i } \quad \text { and } \quad u w = 5$$ Solve the equations for \(u\) and \(w\), giving all answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
    1. On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities \(| z - 2 + 2 \mathrm { i } | \leqslant 2 , \arg z \leqslant - \frac { 1 } { 4 } \pi\) and \(\operatorname { Re } z \geqslant 1\), where \(\operatorname { Re } z\) denotes the real part of \(z\).
    2. Calculate the greatest possible value of \(\operatorname { Re } z\) for points lying in the shaded region.