4
\includegraphics[max width=\textwidth, alt={}, center]{6ff1b572-4cd8-433d-ba16-ffc8cda44476-06_545_958_264_552}
The diagram shows the curve with equation \(y = \frac { 1 } { x ^ { 2 } }\) fo \(x > 0\) tg th rwith a set \(6 ( n - 1 )\) rectab es 6 in t witd h
- By considering the sum of the areas of these rectangles, show that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { r ^ { 2 } } < \frac { 2 n - 1 } { n }$$
- Use a similar method to find, in terms of \(n\), a low er \(\mathbf { H }\)
- \(\sum _ { r = 1 } ^ { n } \frac { 1 } { r ^ { 2 } }\).