CAIE Further Paper 2 2024 November — Question 8

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2024
SessionNovember
TopicComplex numbers 2

8
  1. By considering the binomial expansion of \(\left( z + \frac { 1 } { z } \right) ^ { 7 }\) ,where \(z = \cos \theta + \mathrm { i } \sin \theta\) ,use de Moivre's theorem to show that $$\cos ^ { 7 } \theta = a \cos 7 \theta + b \cos 5 \theta + c \cos 3 \theta + d \cos \theta$$ where \(a , b , c\) and \(d\) are constants to be determined.
    Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { n } \theta \mathrm {~d} \theta\).
  2. Show that $$n I _ { n } = 2 ^ { - \frac { 1 } { 2 } n } + ( n - 1 ) I _ { n - 2 }$$ \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-18_2718_42_107_2007}
  3. Using the results given in parts (a) and (b), find the exact value of \(I _ { 9 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.