CAIE Further Paper 2 2020 Specimen — Question 5

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2020
SessionSpecimen
TopicParametric equations

5 Th cn e \(C\) has parametric equations $$x = \mathrm { e } ^ { t } - 4 t + 3 \quad y = 8 \mathrm { e } ^ { \frac { 1 } { 2 } t } , \quad \text { f } \mathbf { D } \quad 0 \leqslant t \leqslant 2$$
  1. Find, in terms of e, the length of \(C\).
  2. Find, in terms of \(\pi\) and \(e\), the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians ab the \(x\)-ax s.
    [0pt] [\$