A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q6
CAIE Further Paper 2 2020 Specimen — Question 6
Exam Board
CAIE
Module
Further Paper 2 (Further Paper 2)
Year
2020
Session
Specimen
Topic
Complex numbers 2
6
Using de Moivre's theorem, show that $$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta }$$
Hen esh th the eq tion \(x ^ { 2 } - 4 x + 5 = 0\) s ro \(\operatorname { stan } ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) ad \(\operatorname { an } ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8