Questions — AQA (3548 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA C3 Q5
Standard +0.3
5 The diagram shows part of the graph of \(y = \mathrm { e } ^ { 2 x } - 9\). The graph cuts the coordinate axes at ( \(0 , a\) ) and ( \(b , 0\) ). \includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-004_817_908_479_550}
  1. State the value of \(a\), and show that \(b = \ln 3\).
  2. Show that \(y ^ { 2 } = \mathrm { e } ^ { 4 x } - 18 \mathrm { e } ^ { 2 x } + 81\).
  3. The shaded region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the volume of the solid formed, giving your answer in the form \(\pi ( p \ln 3 + q )\), where \(p\) and \(q\) are integers.
  4. Sketch the curve with equation \(y = \left| \mathrm { e } ^ { 2 x } - 9 \right|\) for \(x \geqslant 0\).
AQA C3 Q6
Moderate -0.5
6 [Figure 1, printed on the insert, is provided for use in this question.]
The curve \(y = x ^ { 3 } + 4 x - 3\) intersects the \(x\)-axis at the point \(A\) where \(x = \alpha\).
  1. Show that \(\alpha\) lies between 0.5 and 1.0.
  2. Show that the equation \(x ^ { 3 } + 4 x - 3 = 0\) can be rearranged into the form \(x = \frac { 3 - x ^ { 3 } } { 4 }\).
    (1 mark)
    1. Use the iteration \(x _ { n + 1 } = \frac { 3 - x _ { n } { } ^ { 3 } } { 4 }\) with \(x _ { 1 } = 0.5\) to find \(x _ { 3 }\), giving your answer to two decimal places.
    2. The sketch on Figure 1 shows parts of the graphs of \(y = \frac { 3 - x ^ { 3 } } { 4 }\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
      (3 marks)
AQA C3 Q7
Standard +0.3
7
  1. The sketch shows the graph of \(y = \sin ^ { - 1 } x\). \includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-006_819_824_456_591} Write down the coordinates of the points \(P\) and \(Q\), the end-points of the graph.
  2. Sketch the graph of \(y = - \sin ^ { - 1 } ( x - 1 )\).
AQA C3 Q8
Moderate -0.3
8 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = x ^ { 2 } & \text { for all real values of } x \\ \mathrm {~g} ( x ) = \frac { 1 } { x + 2 } & \text { for real values of } x , \quad x \neq - 2 \end{array}$$
  1. State the range of f.
    1. Find fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = 4\).
    1. Explain why the function f does not have an inverse.
    2. The inverse of g is \(\mathrm { g } ^ { - 1 }\). Find \(\mathrm { g } ^ { - 1 } ( x )\).
AQA C3 Q9
Standard +0.3
9
  1. Given that \(y = x ^ { - 2 } \ln x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 - 2 \ln x } { x ^ { 3 } }\).
  2. Using integration by parts, find \(\int x ^ { - 2 } \ln x \mathrm {~d} x\).
  3. The sketch shows the graph of \(y = x ^ { - 2 } \ln x\). \includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-007_593_1034_696_543}
    1. Using the answer to part (a), find, in terms of e, the \(x\)-coordinate of the stationary point \(A\).
    2. The region \(R\) is bounded by the curve, the \(x\)-axis and the line \(x = 5\). Using your answer to part (b), show that the area of \(R\) is $$\frac { 1 } { 5 } ( 4 - \ln 5 )$$
AQA C3 Q10
Standard +0.3
10
    1. By writing \(\ln x\) as \(( \ln x ) \times 1\), use integration by parts to find \(\int \ln x \mathrm {~d} x\).
    2. Find \(\int ( \ln x ) ^ { 2 } \mathrm {~d} x\).
  1. Use the substitution \(u = \sqrt { x }\) to find the exact value of $$\int _ { 1 } ^ { 4 } \frac { 1 } { x + \sqrt { x } } \mathrm {~d} x$$ (7 marks)
AQA C3 2006 January Q1
5 marks Moderate -0.8
1
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(y = \tan 3 x\).
    (2 marks)
  2. Given that \(y = \frac { 3 x + 1 } { 2 x + 1 }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { ( 2 x + 1 ) ^ { 2 } }\).
    (3 marks)
AQA C3 2006 January Q2
4 marks Moderate -0.5
2 Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to $$\int _ { 1 } ^ { 3 } \frac { 1 } { \sqrt { 1 + x ^ { 3 } } } \mathrm {~d} x$$ giving your answer to three significant figures.
AQA C3 2006 January Q3
10 marks Standard +0.3
3
    1. Given that \(\mathrm { f } ( x ) = x ^ { 4 } + 2 x\), find \(\mathrm { f } ^ { \prime } ( x )\).
    2. Hence, or otherwise, find \(\int \frac { 2 x ^ { 3 } + 1 } { x ^ { 4 } + 2 x } \mathrm {~d} x\).
    1. Use the substitution \(u = 2 x + 1\) to show that $$\int x \sqrt { 2 x + 1 } \mathrm {~d} x = \frac { 1 } { 4 } \int \left( u ^ { \frac { 3 } { 2 } } - u ^ { \frac { 1 } { 2 } } \right) \mathrm { d } u$$
    2. Hence show that \(\int _ { 0 } ^ { 4 } x \sqrt { 2 x + 1 } \mathrm {~d} x = 19.9\) correct to three significant figures.
AQA C3 2006 January Q4
7 marks Moderate -0.3
4 It is given that \(2 \operatorname { cosec } ^ { 2 } x = 5 - 5 \cot x\).
  1. Show that the equation \(2 \operatorname { cosec } ^ { 2 } x = 5 - 5 \cot x\) can be written in the form $$2 \cot ^ { 2 } x + 5 \cot x - 3 = 0$$
  2. Hence show that \(\tan x = 2\) or \(\tan x = - \frac { 1 } { 3 }\).
  3. Hence, or otherwise, solve the equation \(2 \operatorname { cosec } ^ { 2 } x = 5 - 5 \cot x\), giving all values of \(x\) in radians to one decimal place in the interval \(- \pi < x \leqslant \pi\).
AQA C3 2006 January Q5
12 marks Standard +0.3
5 The diagram shows part of the graph of \(y = \mathrm { e } ^ { 2 x } - 9\). The graph cuts the coordinate axes at \(( 0 , a )\) and \(( b , 0 )\). \includegraphics[max width=\textwidth, alt={}, center]{908f530c-076d-47b1-90dd-38dbfe44f898-03_826_924_477_541}
  1. State the value of \(a\), and show that \(b = \ln 3\).
  2. Show that \(y ^ { 2 } = \mathrm { e } ^ { 4 x } - 18 \mathrm { e } ^ { 2 x } + 81\).
  3. The shaded region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the volume of the solid formed, giving your answer in the form \(\pi ( p \ln 3 + q )\), where \(p\) and \(q\) are integers.
  4. Sketch the curve with equation \(y = \left| \mathrm { e } ^ { 2 x } - 9 \right|\) for \(x \geqslant 0\).
AQA C3 2006 January Q6
12 marks Moderate -0.3
6 [Figure 1, printed on the insert, is provided for use in this question.]
The curve \(y = x ^ { 3 } + 4 x - 3\) intersects the \(x\)-axis at the point \(A\) where \(x = \alpha\).
  1. Show that \(\alpha\) lies between 0.5 and 1.0.
  2. Show that the equation \(x ^ { 3 } + 4 x - 3 = 0\) can be rearranged into the form \(x = \frac { 3 - x ^ { 3 } } { 4 }\).
    (1 mark)
    1. Use the iteration \(x _ { n + 1 } = \frac { 3 - x _ { n } { } ^ { 3 } } { 4 }\) with \(x _ { 1 } = 0.5\) to find \(x _ { 3 }\), giving your answer to two decimal places.
      (3 marks)
    2. The sketch on Figure 1 shows parts of the graphs of \(y = \frac { 3 - x ^ { 3 } } { 4 }\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
      (3 marks)
AQA C3 2006 January Q7
5 marks Standard +0.3
7
  1. The sketch shows the graph of \(y = \sin ^ { - 1 } x\). \includegraphics[max width=\textwidth, alt={}, center]{908f530c-076d-47b1-90dd-38dbfe44f898-05_835_834_447_587} Write down the coordinates of the points \(P\) and \(Q\), the end-points of the graph.
  2. Sketch the graph of \(y = - \sin ^ { - 1 } ( x - 1 )\).
AQA C3 2006 January Q8
10 marks Moderate -0.8
8 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = x ^ { 2 } & \text { for all real values of } x \\ \mathrm {~g} ( x ) = \frac { 1 } { x + 2 } & \text { for real values of } x , x \neq - 2 \end{array}$$
  1. State the range of f.
    1. Find fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = 4\).
    1. Explain why the function f does not have an inverse.
    2. The inverse of g is \(\mathrm { g } ^ { - 1 }\). Find \(\mathrm { g } ^ { - 1 } ( x )\).
AQA C3 2006 January Q9
14 marks Standard +0.3
9
  1. Given that \(y = x ^ { - 2 } \ln x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 - 2 \ln x } { x ^ { 3 } }\).
  2. Using integration by parts, find \(\int x ^ { - 2 } \ln x \mathrm {~d} x\).
  3. The sketch shows the graph of \(y = x ^ { - 2 } \ln x\). \includegraphics[max width=\textwidth, alt={}, center]{908f530c-076d-47b1-90dd-38dbfe44f898-06_604_1045_687_536}
    1. Using the answer to part (a), find, in terms of e, the \(x\)-coordinate of the stationary point \(A\).
    2. The region \(R\) is bounded by the curve, the \(x\)-axis and the line \(x = 5\). Using your answer to part (b), show that the area of \(R\) is $$\frac { 1 } { 5 } ( 4 - \ln 5 )$$
AQA C3 2009 January Q1
4 marks Moderate -0.3
1 Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to \(\int _ { 1 } ^ { 9 } \frac { 1 } { 1 + \sqrt { x } } \mathrm {~d} x\), giving your answer to three significant figures.
AQA C3 2009 January Q2
4 marks Moderate -0.3
2 The diagram shows the curve with equation \(y = \sqrt { ( x - 2 ) ^ { 5 } }\) for \(x \geqslant 2\). \includegraphics[max width=\textwidth, alt={}, center]{59b896ae-60ce-49ea-9c70-0f76fc5fffae-2_885_1125_854_461} The shaded region \(R\) is bounded by the curve \(y = \sqrt { ( x - 2 ) ^ { 5 } }\), the \(x\)-axis and the lines \(x = 3\) and \(x = 4\). Find the exact value of the volume of the solid formed when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
AQA C3 2009 January Q3
7 marks Moderate -0.5
3 [Figure 1, printed on the insert, is provided for use in this question.]
The curve with equation \(y = x ^ { 3 } + 5 x - 4\) intersects the \(x\)-axis at the point \(A\), where \(x = \alpha\).
  1. Show that \(\alpha\) lies between 0.5 and 1 .
  2. Show that the equation \(x ^ { 3 } + 5 x - 4 = 0\) can be rearranged into the form $$x = \frac { 1 } { 5 } \left( 4 - x ^ { 3 } \right)$$
  3. Use the iteration \(x _ { n + 1 } = \frac { 1 } { 5 } \left( 4 - x _ { n } { } ^ { 3 } \right)\) with \(x _ { 1 } = 0.5\) to find \(x _ { 3 }\), giving your answer to three decimal places.
  4. The sketch on Figure 1 shows parts of the graphs of \(y = \frac { 1 } { 5 } \left( 4 - x ^ { 3 } \right)\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
AQA C3 2009 January Q4
8 marks Moderate -0.3
4
  1. Solve the equation \(\sec x = \frac { 3 } { 2 }\), giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
  2. By using a suitable trigonometrical identity, solve the equation $$2 \tan ^ { 2 } x = 10 - 5 \sec x$$ giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
AQA C3 2009 January Q5
7 marks Moderate -0.3
5 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = 2 - x ^ { 4 } & \text { for all real values of } x \\ \mathrm {~g} ( x ) = \frac { 1 } { x - 4 } & \text { for real values of } x , x \neq 4 \end{array}$$
  1. State the range of f .
  2. Explain why the function f does not have an inverse.
    1. Write down an expression for fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = - 14\).
AQA C3 2009 January Q6
10 marks Standard +0.3
6 A curve has equation \(y = \mathrm { e } ^ { 2 x } \left( x ^ { 2 } - 4 x - 2 \right)\).
  1. Find the value of the \(x\)-coordinate of each of the stationary points of the curve.
    1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    2. Determine the nature of each of the stationary points of the curve.
AQA C3 2009 January Q7
6 marks Moderate -0.3
7
  1. Given that \(3 \mathrm { e } ^ { x } = 4\), find the exact value of \(x\).
    1. By substituting \(y = \mathrm { e } ^ { x }\), show that the equation \(3 \mathrm { e } ^ { x } + 20 \mathrm { e } ^ { - x } = 19\) can be written as \(3 y ^ { 2 } - 19 y + 20 = 0\).
    2. Hence solve the equation \(3 \mathrm { e } ^ { x } + 20 \mathrm { e } ^ { - x } = 19\), giving your answers as exact values. (3 marks)
AQA C3 2009 January Q8
13 marks Standard +0.3
8 The sketch shows the graph of \(y = \cos ^ { - 1 } x\). \includegraphics[max width=\textwidth, alt={}, center]{59b896ae-60ce-49ea-9c70-0f76fc5fffae-5_593_686_383_683}
  1. Write down the coordinates of \(P\) and \(Q\), the end points of the graph.
  2. Describe a sequence of two geometrical transformations that maps the graph of \(y = \cos ^ { - 1 } x\) onto the graph of \(y = 2 \cos ^ { - 1 } ( x - 1 )\).
  3. Sketch the graph of \(y = 2 \cos ^ { - 1 } ( x - 1 )\).
    1. Write the equation \(y = 2 \cos ^ { - 1 } ( x - 1 )\) in the form \(x = \mathrm { f } ( y )\).
    2. Hence find the value of \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) when \(y = 2\).
AQA C3 2009 January Q9
16 marks Standard +0.3
9
  1. Given that \(y = \frac { 4 x } { 4 x - 3 }\), use the quotient rule to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { k } { ( 4 x - 3 ) ^ { 2 } }\), where \(k\) is an integer.
    1. Given that \(y = x \ln ( 4 x - 3 )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Find an equation of the tangent to the curve \(y = x \ln ( 4 x - 3 )\) at the point where \(x = 1\).
    1. Use the substitution \(u = 4 x - 3\) to find \(\int \frac { 4 x } { 4 x - 3 } \mathrm {~d} x\), giving your answer in terms of \(x\).
    2. By using integration by parts, or otherwise, find \(\int \ln ( 4 x - 3 ) \mathrm { d } x\).
AQA C3 2010 January Q1
8 marks Standard +0.3
1 A curve has equation \(y = \mathrm { e } ^ { - 4 x } \left( x ^ { 2 } + 2 x - 2 \right)\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 \mathrm { e } ^ { - 4 x } \left( 5 - 3 x - 2 x ^ { 2 } \right)\).
  2. Find the exact values of the coordinates of the stationary points of the curve.