Questions — AQA Further Paper 3 Mechanics (55 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA Further Paper 3 Mechanics 2024 June Q2
1 marks
2 As a particle moves along a straight horizontal line, it is subjected to a force \(F\) newtons that acts in the direction of motion of the particle. At time \(t\) seconds, \(F = \frac { t } { 5 }\)
Calculate the magnitude of the impulse on the particle between \(t = 0\) and \(t = 3\)
Circle your answer.
[0pt] [1 mark]
\(0.3 \mathrm {~N} \mathrm {~s} \quad 0.6 \mathrm {~N} \mathrm {~s} \quad 0.9 \mathrm {~N} \mathrm {~s} \quad 1.8 \mathrm {~N} \mathrm {~s}\) A conical pendulum consists of a light string and a particle of mass \(m \mathrm {~kg}\) The conical pendulum completes horizontal circles with radius \(r\) metres and angular speed \(\omega\) radians per second. The string makes an angle \(\theta\) with the downward vertical. The tension in the string is \(T\) newtons. The conical pendulum and the forces acting on the particle are shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-03_616_593_689_703} Which one of the following statements is correct?
Tick ( ✓ ) one box.
\(T \cos \theta = m r \omega ^ { 2 }\)
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-03_108_108_1567_900}
\(T \sin \theta = m r \omega ^ { 2 }\)
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-03_109_108_1726_900}
\(T \cos \theta = \frac { m \omega ^ { 2 } } { r }\)
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-03_109_108_1886_900}
\(T \sin \theta = \frac { m \omega ^ { 2 } } { r }\) □
AQA Further Paper 3 Mechanics 2024 June Q4
4 A particle of mass 3 kg is attached to one end of a light inextensible string. The other end of the string is attached to a fixed point on a smooth horizontal surface.
The particle is set into motion so that it moves with a constant speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a circular path with radius 0.8 metres on the horizontal surface. 4
  1. Find the acceleration of the particle.
    4
  2. Find the tension in the string.
    4
  3. Show that the angular speed of the particle is 48 revolutions per minute correct to two significant figures.
AQA Further Paper 3 Mechanics 2024 June Q5
5 When a sphere of radius \(r\) metres is falling at \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) it experiences an air resistance force \(F\) newtons. The force is to be modelled as $$F = k r ^ { \alpha } { } _ { V } { } ^ { \beta }$$ where \(k\) is a constant with units \(\mathrm { kg } \mathrm { m } ^ { - 2 }\) 5
  1. State the dimensions of \(F\)
    5
  2. Use dimensional analysis to find the value of \(\alpha\) and the value of \(\beta\)
AQA Further Paper 3 Mechanics 2024 June Q6
6 In this question use \(\boldsymbol { g } = 9.8 \mathbf { m ~ s } ^ { - 2 }\) A light elastic string has natural length 3 metres and modulus of elasticity 18 newtons.
One end of the elastic string is attached to a particle of mass 0.25 kg
The other end of the elastic string is attached to a fixed point \(O\)
The particle is released from rest at a point \(A\), which is 4.5 metres vertically below \(O\) 6
  1. Calculate the elastic potential energy of the string when the particle is at \(A\)
    6
  2. The point \(B\) is 3 metres vertically below \(O\) Calculate the gravitational potential energy gained by the particle as it moves from \(A\) to \(B\)
    6
  3. Find the speed of the particle at \(B\)
    6
  4. The point \(C\) is 3.6 metres vertically below \(O\)
    Explain, showing any calculations that you make, why the speed of the particle is increasing the first time that the particle is at \(C\)
AQA Further Paper 3 Mechanics 2024 June Q7
7 A sphere, of mass 0.2 kg , moving on a smooth horizontal surface, collides with a fixed wall. Before the collision the sphere moves with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(60 ^ { \circ }\) to the wall. After the collision the sphere moves with speed \(\nu \mathrm { m } \mathrm { s } ^ { - 1 }\) at an angle of \(\theta ^ { \circ }\) to the wall. The velocities are shown in the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-08_303_762_735_625} The coefficient of restitution between the wall and the sphere is 0.7 7
  1. Assume that the wall is smooth. 7
    1. Find the value of \(v\) Give your answer to two significant figures.
      7
  2. (ii) Find the value of \(\theta\) Give your answer to the nearest whole number.
    7
  3. (iii) Find the magnitude of the impulse exerted on the sphere by the wall.
    Give your answer to two significant figures.
    7
  4. In reality the wall is not smooth.
    Explain how this would cause a change in the magnitude of the impulse calculated in part (a)(iii).
AQA Further Paper 3 Mechanics 2024 June Q8
4 marks
8 The finite region enclosed by the line \(y = k x\), the \(x\)-axis and the line \(x = 5\) is rotated through \(360 ^ { \circ }\) around the \(x\) axis to form a solid cone. 8
    1. Use integration to show that the position of the centre of mass of the cone is independent of \(k\)
      8
  1. (ii) State the distance between the base of the cone and its centre of mass.
    8
  2. State one assumption that you have made about the cone. 8
  3. The plane face of the cone is placed on a rough inclined plane.
    The coefficient of friction between the cone and the plane is 0.8
    The angle between the plane and the horizontal is gradually increased from \(0 ^ { \circ }\) Find the range of values of \(k\) for which the cone slides before it topples.
    [0pt] [4 marks]
AQA Further Paper 3 Mechanics 2024 June Q9
9 A small sphere, of mass \(m\), is attached to one end of a light inextensible string of length \(a\) The other end of the string is attached to a fixed point \(O\) The sphere is at rest in equilibrium directly below \(O\) when it is struck, giving it a horizontal impulse of magnitude \(m U\) After the impulse, the sphere follows a circular path in a vertical plane containing the point \(O\) until the string becomes slack at the point \(C\) At \(C\) the string makes an angle of \(30 ^ { \circ }\) with the upward vertical through \(O\), as shown in the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-12_583_331_875_901} 9
  1. Show that $$U ^ { 2 } = \frac { a g } { 2 } ( 4 + 3 \sqrt { 3 } )$$ where \(g\) is the acceleration due to gravity.
    9
  2. With reference to any modelling assumptions that you have made, explain why giving your answer as an inequality would be more appropriate, and state this inequality.
    \includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-14_2491_1755_173_123} \begin{center} \begin{tabular}{|l|l|} \hline Question number & Additional page, if required. Write the question numbers in the left-hand margin.
    \hline & \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\)
    \hline & \begin{tabular}{l}
AQA Further Paper 3 Mechanics Specimen Q1
1 marks
1 A ball of mass 0.2 kg is travelling horizontally at \(7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when it hits a vertical wall.
It rebounds horizontally at \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
Find the magnitude of the impulse exerted on the ball by the wall.
Circle your answer.
[0pt] [1 mark]
0.4 N s
1.4 N s
AQA Further Paper 3 Mechanics Specimen Q2
1 marks
2 Ns
2.4 N s 2 In this question
\(a\)represents acceleration,
\(T\)represents time,
\(l\)represents length,
\(m\)represents mass,
\(v\)represents velocity,
\(F\)represents force.
One of these formulae is dimensionally consistent.
Circle your answer.
[0pt] [1 mark] $$T = 2 \pi \sqrt { \frac { a } { l } } \quad v ^ { 2 } = \frac { 2 a l } { T } \quad F l = m v ^ { 2 } \quad F T = m \sqrt { a }$$ Turn over for the next question
AQA Further Paper 3 Mechanics Specimen Q3
4 marks
3 In this question use \(g = 9.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
A composite body consists of a uniform rod, \(A B\), and a particle.
The rod has length 4 metres and mass 22.5 kilograms.
The particle, \(P\), has mass 20 kilograms and is placed on the rod at a distance of 0.3 metres from \(B\), as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{4fdb2637-6368-422c-99da-85b80efe31c5-04_163_1323_767_402} 3
  1. Find the distance of the centre of mass of the body from \(A\). 3
  2. The body rests in equilibrium in a horizontal position on two supports, \(C\) and \(D\).
    The support \(C\) is 0.5 metres from \(A\) and the support \(D\) is 1 metre from \(B\). Find the magnitudes of the forces exerted on the body by the supports.
    [0pt] [4 marks]
AQA Further Paper 3 Mechanics Specimen Q4
4 Two discs, \(A\) and \(B\), have equal radii and masses 0.8 kg and 0.4 kg respectively. The discs are placed on a horizontal surface. The discs are set in motion when they are 3 metres apart, so that they move directly towards each other, each travelling at a speed of \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The discs collide directly with each other. After the collision \(A\) moves in the opposite direction with a speed of \(1.2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
The coefficient of restitution between the two discs is \(e\). 4
  1. Assuming that the surface is smooth, show that \(e = 0.8\)
    4
  2. Describe one way in which the model you have used could be refined. Turn over for the next question
AQA Further Paper 3 Mechanics Specimen Q5
3 marks
5 In this question use \(\boldsymbol { g } = 9.8 \mathbf { m ~ s } ^ { \mathbf { - 2 } }\).
A conical pendulum consists of a string of length 60 cm and a particle of mass 400 g . The string is at an angle of \(30 ^ { \circ }\) to the vertical, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{4fdb2637-6368-422c-99da-85b80efe31c5-08_501_606_644_854} 5
  1. Show that the tension in the string is 4.5 N . 5
  2. Find the angular speed of the particle.
    [0pt] [3 marks]
    5
  3. State two assumptions that you have made about the string.
AQA Further Paper 3 Mechanics Specimen Q6
6 A uniform solid is formed by rotating the region enclosed by the positive \(x\)-axis, the line \(x = 2\) and the curve \(y = \frac { 1 } { 2 } x ^ { 2 }\) through \(360 ^ { \circ }\) around the \(x\)-axis. 6
  1. Find the centre of mass of this solid.
    6
  2. The solid is placed with its plane face on a rough inclined plane and does not slide. The angle between the inclined plane and the horizontal is gradually increased. When the angle between the inclined plane and the horizontal is \(\alpha\), the solid is on the point of toppling. Find \(\alpha\), giving your answer to the nearest \(0.1 ^ { \circ }\)
AQA Further Paper 3 Mechanics Specimen Q7
5 marks
7 In this question use \(g = 9.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
When a car, of mass 1200 kg , travels at a speed of \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) it experiences a total resistive force which can be modelled as being of magnitude \(36 v\) newtons.
The maximum power of the car is 90 kilowatts.
The car starts to descend a hill, inclined at \(5.2 ^ { \circ }\) to the horizontal, along a straight road.
Find the maximum speed of the car down this hill.
[0pt] [5 marks]
AQA Further Paper 3 Mechanics Specimen Q8
3 marks
8 The diagram shows part of a water park slide, \(A B C\).
The slide is in the shape of two circular arcs, \(A B\) and \(B C\), each of radius \(r\).
The point \(A\) is at a height of \(\frac { r } { 4 }\) above \(B\).
The circular \(\operatorname { arc } B C\) has centre \(O\) and \(B\) is vertically above \(O\).
These points are joined as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{4fdb2637-6368-422c-99da-85b80efe31c5-12_590_1173_756_443} A child starts from rest at \(A\), moves along the slide past the point \(B\) and then loses contact with the slide at a point \(D\). The angle between the vertical, \(O B\), and \(O D\) is \(\theta\)
Assume that the slide is smooth. 8
  1. Show that the speed \(v\) of the child at \(D\) is given by \(v = \sqrt { \frac { g r } { 2 } ( 5 - 4 \cos \theta ) }\), where \(g\) is the acceleration due to gravity. 8
  2. Find \(\theta\), giving your answer to the nearest degree.
    8
  3. A refined model takes into account air resistance. Explain how taking air resistance into account would affect your answer to part (b).
    [0pt] [2 marks]
    8
  4. In reality the slide is not smooth. It has a surface with the same coefficient of friction between the slide and the child for its entire length. Explain why the frictional force experienced by the child is not constant.
    [0pt] [1 mark]
AQA Further Paper 3 Mechanics Specimen Q9
10 marks
9 In this question use \(g = 9.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
A light elastic string has one end attached to a fixed point, \(A\), on a rough plane inclined at \(30 ^ { \circ }\) to the horizontal. The other end of the string is attached to a particle, \(P\), of mass 2 kg .
The elastic string has natural length 1.3 metres and modulus of elasticity 65 N .
The particle is pulled down the plane in the direction of the line of greatest slope through \(A\).
The particle is released from rest when it is 2 metres from \(A\), as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{4fdb2637-6368-422c-99da-85b80efe31c5-14_549_744_861_785} The coefficient of friction between the particle and the plane is 0.6
After the particle is released it moves up the plane.
The particle comes to rest at a point \(B\), which is a distance, \(d\) metres, from \(A\). 9
  1. Show that the value of \(d\) is 1.4.
    [0pt] [7 marks] 9
  2. Determine what happens after \(P\) reaches the point \(B\). Fully justify your answer.
    [0pt] [3 marks]
AQA Further Paper 3 Mechanics 2019 June Q1
1 A spring has natural length 0.4 metres and modulus of elasticity 55 N
Calculate the elastic potential energy stored in the spring when the extension of the spring is 0.08 metres. Circle your answer.
\(0.176 \mathrm {~J} \quad 0.44 \mathrm {~J} \quad 0.88 \mathrm {~J} \quad 1.76 \mathrm {~J}\)
AQA Further Paper 3 Mechanics 2019 June Q2
1 marks
2 A particle has an angular speed of 72 revolutions per minute.
Find the angular speed in radians per second.
Circle your answer.
[0pt] [1 mark] \(\frac { 6 \pi } { 5 } \quad \frac { 12 \pi } { 5 } \quad 12 \pi \quad 24 \pi\)
AQA Further Paper 3 Mechanics 2019 June Q3
3 A disc, of mass \(m\) and radius \(r\), rotates about an axis through its centre, perpendicular to the plane face of the disc. The angular speed of the disc is \(\omega\).
A possible model for the kinetic energy \(E\) of the disc is $$E = k m ^ { a } r ^ { b } \omega ^ { c }$$ where \(a , b\) and \(c\) are constants and \(k\) is a dimensionless constant.
Find the values of \(a , b\) and \(c\).
AQA Further Paper 3 Mechanics 2019 June Q4
4 In this question use \(g = 10 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) An inelastic string has length 1.2 metres.
One end of the string is attached to a fixed point \(O\).
A sphere, of mass 500 grams, is attached to the other end of the string.
The sphere is held, with the string taut and at an angle of \(20 ^ { \circ }\) to the vertical, touching the chin of a student, as shown in the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{f2470caa-0f73-4ec1-b08f-525c02ed2e67-04_739_511_676_762} The sphere is released from rest.
Assume that the student stays perfectly still once the sphere has been released.
4
  1. Calculate the maximum speed of the sphere.
    4
AQA Further Paper 3 Mechanics 2019 June Q5
5 The triangular region shown below is rotated through \(360 ^ { \circ }\) around the \(x\)-axis, to form a solid cone.
\includegraphics[max width=\textwidth, alt={}, center]{f2470caa-0f73-4ec1-b08f-525c02ed2e67-06_328_755_415_644} The coordinates of the vertices of the triangle are \(( 0,0 ) , ( 8,0 )\) and \(( 0,4 )\).
All units are in centimetres. 5
  1. State an assumption that you should make about the cone in order to find the position of its centre of mass. 5
  2. Using integration, prove that the centre of mass of the cone is 2 cm from its plane face.
    5
  3. The cone is placed with its plane face on a rough board. One end of the board is lifted so that the angle between the board and the horizontal is gradually increased. Eventually the cone topples without sliding. 5
    1. Find the angle between the board and the horizontal when the cone topples, giving your answer to the nearest degree. 5
  4. (ii) Find the range of possible values for the coefficient of friction between the cone and the board.
AQA Further Paper 3 Mechanics 2019 June Q6
6 A ball moving on a smooth horizontal surface collides with a fixed vertical wall. Before the collision, the ball moves with speed \(7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and at an angle of \(40 ^ { \circ }\) to the wall. After the collision, the ball moves with speed \(5 \mathrm {~ms} ^ { - 1 }\) and at an angle of \(26 ^ { \circ }\) to the wall. Model the ball as a particle.
6
  1. Find the coefficient of restitution between the ball and the wall, giving your answer correct to two significant figures.
    6
  2. Determine whether or not the wall is smooth. Fully justify your answer.
AQA Further Paper 3 Mechanics 2019 June Q7
7 A particle of mass 2.5 kilograms is attached to one end of a light, inextensible string of length 75 cm . The other end of this string is attached to a point \(A\). The particle is also attached to one end of an elastic string of natural length 30 cm and modulus of elasticity \(\lambda \mathrm { N }\). The other end of this string is attached to a point \(B\), which is 60 cm vertically below \(A\). The particle is set in motion so that it describes a horizontal circle with centre \(B\). The angular speed of the particle is \(8 \mathrm { rad } \mathrm { s } { } ^ { - 1 }\) Find \(\lambda\), giving your answer in terms of \(g\).
AQA Further Paper 3 Mechanics 2019 June Q8
5 marks
8 In this question use \(g = 9.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) A 'reverse' bungee jump consists of two identical elastic ropes. One end of each elastic rope is attached to either side of the top of a gorge. The other ends are both attached to Hannah, who has mass 84 kg
Hannah is modelled as a particle, as shown in the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{f2470caa-0f73-4ec1-b08f-525c02ed2e67-12_467_844_678_598} The depth of the gorge is 50 metres and the width of the gorge is 40 metres.
Each elastic rope has natural length 30 metres and modulus of elasticity 3150 N
Hannah is released from rest at the centre of the bottom of the gorge.
8
  1. Show that the speed of Hannah when the ropes become slack is \(30 \mathrm {~ms} ^ { - 1 }\) correct to two significant figures.
    8
  2. Determine whether Hannah is moving up or down when the ropes become taut again. [5 marks]
    \includegraphics[max width=\textwidth, alt={}, center]{f2470caa-0f73-4ec1-b08f-525c02ed2e67-14_2492_1721_217_150} Additional page, if required.
    Write the question numbers in the left-hand margin. Question number Additional page, if required.
    Write the question numbers in the left-hand margin. Question number Additional page, if required.
    Write the question numbers in the left-hand margin. Question number Additional page, if required.
    Write the question numbers in the left-hand margin.
AQA Further Paper 3 Mechanics 2020 June Q1
1 A rigid rod, \(A B\), has mass 2 kg and length 4 metres.
Two particles of masses 5 kg and 3 kg are fixed to \(A\) and \(B\) respectively to create a composite body, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{b0d0c552-71cb-4e5a-b545-de8a9052def0-02_120_730_769_653} Find the distance of the centre of mass of the composite body from \(B\). Circle your answer.
1.5 metres
1.6 metres
2.4 metres
2.5 metres