| Exam Board | AQA |
| Module | Further Paper 3 Mechanics (Further Paper 3 Mechanics) |
| Year | 2024 |
| Session | June |
| Marks | 1 |
| Topic | Momentum and Collisions 1 |
2 As a particle moves along a straight horizontal line, it is subjected to a force \(F\) newtons that acts in the direction of motion of the particle.
At time \(t\) seconds, \(F = \frac { t } { 5 }\)
Calculate the magnitude of the impulse on the particle between \(t = 0\) and \(t = 3\)
Circle your answer.
[0pt]
[1 mark]
\(0.3 \mathrm {~N} \mathrm {~s} \quad 0.6 \mathrm {~N} \mathrm {~s} \quad 0.9 \mathrm {~N} \mathrm {~s} \quad 1.8 \mathrm {~N} \mathrm {~s}\)
A conical pendulum consists of a light string and a particle of mass \(m \mathrm {~kg}\)
The conical pendulum completes horizontal circles with radius \(r\) metres and angular speed \(\omega\) radians per second. The string makes an angle \(\theta\) with the downward vertical.
The tension in the string is \(T\) newtons.
The conical pendulum and the forces acting on the particle are shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-03_616_593_689_703}
Which one of the following statements is correct?
Tick ( ✓ ) one box.
\(T \cos \theta = m r \omega ^ { 2 }\)
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-03_108_108_1567_900}
\(T \sin \theta = m r \omega ^ { 2 }\)
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-03_109_108_1726_900}
\(T \cos \theta = \frac { m \omega ^ { 2 } } { r }\)
\includegraphics[max width=\textwidth, alt={}, center]{86817115-46a1-4702-8a33-8f9b05d69bb9-03_109_108_1886_900}
\(T \sin \theta = \frac { m \omega ^ { 2 } } { r }\) □