Express and solve equation

A question is this type if and only if it requires expressing in harmonic form and then using that form to solve a trigonometric equation for specific values of the variable.

91 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
CAIE P2 2010 November Q6
7 marks Moderate -0.3
6
  1. Express \(2 \sin \theta - \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the exact value of \(R\) and the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$2 \sin \theta - \cos \theta = - 0.4$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
CAIE P2 2011 November Q8
8 marks Moderate -0.3
8
  1. Express \(5 \cos \theta - 3 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the exact value of \(R\) and the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$5 \cos \theta - 3 \sin \theta = 4$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
  3. Write down the least value of \(15 \cos \theta - 9 \sin \theta\) as \(\theta\) varies.
CAIE P2 2015 November Q3
7 marks Moderate -0.3
3
  1. Express \(8 \sin \theta + 15 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$8 \sin \theta + 15 \cos \theta = 6$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
CAIE P2 2015 November Q6
9 marks Standard +0.3
6
  1. Express \(( \sqrt { } 5 ) \cos \theta - 2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the value of \(\alpha\) correct to 2 decimal places.
  2. Hence
    (a) solve the equation \(( \sqrt { } 5 ) \cos \theta - 2 \sin \theta = 0.9\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\),
    (b) state the greatest and least values of $$10 + ( \sqrt { } 5 ) \cos \theta - 2 \sin \theta$$ as \(\theta\) varies.
CAIE P2 2019 November Q8
10 marks Standard +0.3
8
  1. Express \(0.5 \cos \theta - 1.2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation \(0.5 \cos \theta - 1.2 \sin \theta = 0.8\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
  3. Determine the greatest and least possible values of \(( 3 - \cos \theta + 2.4 \sin \theta ) ^ { 2 }\) as \(\theta\) varies.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 Specimen Q3
7 marks Moderate -0.3
3
  1. Express \(8 \sin \theta + 15 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$8 \sin \theta + 15 \cos \theta = 6$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
CAIE P3 2020 June Q5
7 marks Standard +0.3
5
  1. Express \(\sqrt { 2 } \cos x - \sqrt { 5 } \sin x\) in the form \(R \cos ( x + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the exact value of \(R\) and the value of \(\alpha\) correct to 3 decimal places.
  2. Hence solve the equation \(\sqrt { 2 } \cos 2 \theta - \sqrt { 5 } \sin 2 \theta = 1\), for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P3 2023 June Q6
8 marks Standard +0.3
6
  1. Express \(3 \cos x + 2 \cos \left( x - 60 ^ { \circ } \right)\) in the form \(R \cos ( x - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). State the exact value of \(R\) and give \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$3 \cos 2 \theta + 2 \cos \left( 2 \theta - 60 ^ { \circ } \right) = 2.5$$ for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P3 2021 March Q5
8 marks Standard +0.3
5
  1. Express \(\sqrt { 7 } \sin x + 2 \cos x\) in the form \(R \sin ( x + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). State the exact value of \(R\) and give \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation \(\sqrt { 7 } \sin 2 \theta + 2 \cos 2 \theta = 1\), for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P3 2023 March Q6
7 marks Standard +0.3
6
  1. Express \(5 \sin \theta + 12 \cos \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
  2. Hence solve the equation \(5 \sin 2 x + 12 \cos 2 x = 6\) for \(0 \leqslant x \leqslant \pi\).
CAIE P3 2024 March Q8
9 marks Challenging +1.2
8
  1. Express \(3 \sin x + 2 \sqrt { 2 } \cos \left( x + \frac { 1 } { 4 } \pi \right)\) in the form \(\mathrm { R } \sin ( \mathrm { x } + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\). State the exact value of \(R\) and give \(\alpha\) correct to 3 decimal places.
  2. Hence solve the equation $$6 \sin \frac { 1 } { 2 } \theta + 4 \sqrt { 2 } \cos \left( \frac { 1 } { 2 } \theta + \frac { 1 } { 4 } \pi \right) = 3$$ for \(- 4 \pi < \theta < 4 \pi\).
CAIE P3 2020 November Q6
7 marks Standard +0.3
6
  1. Express \(\sqrt { 6 } \cos \theta + 3 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). State the exact value of \(R\) and give \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation \(\sqrt { 6 } \cos \frac { 1 } { 3 } x + 3 \sin \frac { 1 } { 3 } x = 2.5\), for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
CAIE P3 2022 November Q4
8 marks Moderate -0.3
4
  1. Express \(4 \cos x - \sin x\) in the form \(R \cos ( x + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). State the exact value of \(R\) and give \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation \(4 \cos 2 x - \sin 2 x = 3\) for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
Edexcel P2 2018 Specimen Q9
9 marks Moderate -0.3
9. (i) Solve, for \(0 \leqslant \theta < \pi\), the equation $$\sin 3 \theta - \sqrt { 3 } \cos 3 \theta = 0$$ giving your answers in terms of \(\pi\) (ii) Given that $$4 \sin ^ { 2 } x + \cos x = 4 - k , \quad 0 \leqslant k \leqslant 3$$
  1. find \(\cos x\) in terms of \(k\)
  2. When \(k = 3\), find the values of \(x\) in the range \(0 \leqslant x < 360 ^ { \circ }\)
    \includegraphics[max width=\textwidth, alt={}]{0aafa21b-25f4-4f36-b914-bbaf6cae7a66-30_2671_1942_107_121}
Edexcel C34 2016 January Q10
12 marks Standard +0.3
10. (a) Express \(3 \sin 2 x + 5 \cos 2 x\) in the form \(R \sin ( 2 x + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\) Give the exact value of \(R\) and give the value of \(\alpha\) to 3 significant figures.
(b) Solve, for \(0 < x < \pi\), $$3 \sin 2 x + 5 \cos 2 x = 4$$ (Solutions based entirely on graphical or numerical methods are not acceptable.) $$g ( x ) = 4 ( 3 \sin 2 x + 5 \cos 2 x ) ^ { 2 } + 3$$ (c) Using your answer to part (a) and showing your working,
  1. find the greatest value of \(\mathrm { g } ( x )\),
  2. find the least value of \(\mathrm { g } ( x )\).
Edexcel C34 2018 October Q1
8 marks Standard +0.3
  1. (a) Write \(\cos \theta + 4 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the exact value of \(R\) and give the value of \(\alpha\) in radians to 3 decimal places.
    (b) Hence solve, for \(0 \leqslant \theta < \pi\), the equation
$$\cos 2 \theta + 4 \sin 2 \theta = 1.2$$ giving your answers to 2 decimal places.
Edexcel C34 Specimen Q1
8 marks Standard +0.3
  1. (a) Express \(5 \cos 2 \theta - 12 \sin 2 \theta\) in the form \(R \cos ( 2 \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\) Give the value of \(\alpha\) to 2 decimal places.
    (b) Hence solve, for \(0 \leqslant \theta < 180 ^ { \circ }\), the equation
$$5 \cos 2 \theta - 12 \sin 2 \theta = 10$$ giving your answers to 1 decimal place.
Edexcel C3 2006 January Q6
12 marks Standard +0.3
6. $$f ( x ) = 12 \cos x - 4 \sin x$$ Given that \(\mathrm { f } ( x ) = R \cos ( x + \alpha )\), where \(R \geqslant 0\) and \(0 \leqslant \alpha \leqslant 90 ^ { \circ }\),
  1. find the value of \(R\) and the value of \(\alpha\).
  2. Hence solve the equation $$12 \cos x - 4 \sin x = 7$$ for \(0 \leqslant x < 360 ^ { \circ }\), giving your answers to one decimal place.
    1. Write down the minimum value of \(12 \cos x - 4 \sin x\).
    2. Find, to 2 decimal places, the smallest positive value of \(x\) for which this minimum value occurs. \includegraphics[max width=\textwidth, alt={}, center]{5cd53af1-bac9-4ed9-ac45-59ad2e372423-09_60_35_2669_1853}
Edexcel C3 2007 January Q5
8 marks Standard +0.3
5. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{a4ad749b-181b-4680-8771-94d9b581125a-07_865_926_301_516}
\end{figure} Figure 1 shows an oscilloscope screen. The curve shown on the screen satisfies the equation $$y = \sqrt { 3 } \cos x + \sin x$$
  1. Express the equation of the curve in the form \(y = R \sin ( x + \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
  2. Find the values of \(x , 0 \leqslant x < 2 \pi\), for which \(y = 1\).
Edexcel C3 2010 January Q3
9 marks Standard +0.3
3. (a) Express \(5 \cos x - 3 \sin x\) in the form \(R \cos ( x + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
(b) Hence, or otherwise, solve the equation $$5 \cos x - 3 \sin x = 4$$ for \(0 \leqslant x < 2 \pi\), giving your answers to 2 decimal places.
Edexcel C3 2011 January Q1
9 marks Standard +0.3
  1. (a) Express \(7 \cos x - 24 \sin x\) in the form \(R \cos ( x + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the value of \(\alpha\) to 3 decimal places.
    (b) Hence write down the minimum value of \(7 \cos x - 24 \sin x\).
    (c) Solve, for \(0 \leqslant x < 2 \pi\), the equation
$$7 \cos x - 24 \sin x = 10$$ giving your answers to 2 decimal places.
Edexcel C3 2007 June Q6
11 marks Standard +0.3
  1. (a) Express \(3 \sin x + 2 \cos x\) in the form \(R \sin ( x + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
    (b) Hence find the greatest value of \(( 3 \sin x + 2 \cos x ) ^ { 4 }\).
    (c) Solve, for \(0 < x < 2 \pi\), the equation
$$3 \sin x + 2 \cos x = 1$$ giving your answers to 3 decimal places.
Edexcel C3 2008 June Q2
12 marks Moderate -0.3
2. $$f ( x ) = 5 \cos x + 12 \sin x$$ Given that \(\mathrm { f } ( x ) = R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\),
  1. find the value of \(R\) and the value of \(\alpha\) to 3 decimal places.
  2. Hence solve the equation $$5 \cos x + 12 \sin x = 6$$ for \(0 \leqslant x < 2 \pi\).
    1. Write down the maximum value of \(5 \cos x + 12 \sin x\).
    2. Find the smallest positive value of \(x\) for which this maximum value occurs.
Edexcel C3 2009 June Q6
12 marks Standard +0.3
  1. (a) Use the identity \(\cos ( A + B ) = \cos A \cos B - \sin A \sin B\), to show that
$$\cos 2 A = 1 - 2 \sin ^ { 2 } A$$ The curves \(C _ { 1 }\) and \(C _ { 2 }\) have equations $$\begin{aligned} & C _ { 1 } : \quad y = 3 \sin 2 x \\ & C _ { 2 } : \quad y = 4 \sin ^ { 2 } x - 2 \cos 2 x \end{aligned}$$ (b) Show that the \(x\)-coordinates of the points where \(C _ { 1 }\) and \(C _ { 2 }\) intersect satisfy the equation $$4 \cos 2 x + 3 \sin 2 x = 2$$ (c) Express \(4 \cos 2 x + 3 \sin 2 x\) in the form \(R \cos ( 2 x - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) to 2 decimal places.
(d) Hence find, for \(0 \leqslant x < 180 ^ { \circ }\), all the solutions of $$4 \cos 2 x + 3 \sin 2 x = 2$$ giving your answers to 1 decimal place.
Edexcel C3 2013 June Q3
10 marks Standard +0.3
3. $$f ( x ) = 7 \cos x + \sin x$$ Given that \(\mathrm { f } ( x ) = R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\),
  1. find the exact value of \(R\) and the value of \(\alpha\) to one decimal place.
  2. Hence solve the equation $$7 \cos x + \sin x = 5$$ for \(0 \leqslant x < 360 ^ { \circ }\), giving your answers to one decimal place.
  3. State the values of \(k\) for which the equation $$7 \cos x + \sin x = k$$ has only one solution in the interval \(0 \leqslant x < 360 ^ { \circ }\)