Express and solve equation

A question is this type if and only if it requires expressing in harmonic form and then using that form to solve a trigonometric equation for specific values of the variable.

91 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
Edexcel C3 2015 June Q3
10 marks Standard +0.3
3. $$g ( \theta ) = 4 \cos 2 \theta + 2 \sin 2 \theta$$ Given that \(\mathrm { g } ( \theta ) = R \cos ( 2 \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\),
  1. find the exact value of \(R\) and the value of \(\alpha\) to 2 decimal places.
  2. Hence solve, for \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\), $$4 \cos 2 \theta + 2 \sin 2 \theta = 1$$ giving your answers to one decimal place. Given that \(k\) is a constant and the equation \(\mathrm { g } ( \theta ) = k\) has no solutions,
  3. state the range of possible values of \(k\).
Edexcel C3 Q8
12 marks Standard +0.3
  1. In a particular circuit the current, \(I\) amperes, is given by
$$I = 4 \sin \theta - 3 \cos \theta , \quad \theta > 0$$ where \(\theta\) is an angle related to the voltage. Given that \(I = R \sin ( \theta - \alpha )\), where \(R > 0\) and \(0 \leqslant \alpha < 360 ^ { \circ }\),
  1. find the value of \(R\), and the value of \(\alpha\) to 1 decimal place.
  2. Hence solve the equation \(4 \sin \theta - 3 \cos \theta = 3\) to find the values of \(\theta\) between 0 and \(360 ^ { \circ }\).
  3. Write down the greatest value for \(I\).
  4. Find the value of \(\theta\) between 0 and \(360 ^ { \circ }\) at which the greatest value of \(I\) occurs.
    8. continued
OCR C3 Q6
10 marks Standard +0.3
  1. (i) Express \(4 \sin x + 3 \cos x\) in the form \(R \sin ( x + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
    (ii) State the minimum value of \(4 \sin x + 3 \cos x\) and the smallest positive value of \(x\) for which this minimum value occurs.
    (iii) Solve the equation
$$4 \sin 2 \theta + 3 \cos 2 \theta = 2$$ for \(\theta\) in the interval \(0 \leq \theta \leq \pi\), giving your answers to 2 decimal places.
OCR C3 Q7
10 marks Standard +0.3
7 $$f ( x ) = 2 + \cos x + 3 \sin x$$
  1. Express \(\mathrm { f } ( x )\) in the form $$\mathrm { f } ( x ) = a + b \cos ( x - c )$$ where \(a , b\) and \(c\) are constants, \(b > 0\) and \(0 < c < \frac { \pi } { 2 }\).
  2. Solve the equation \(\mathrm { f } ( x ) = 0\) for \(x\) in the interval \(0 \leq x \leq 2 \pi\).
  3. Use Simpson's rule with four strips, each of width 0.5 , to find an approximate value for $$\int _ { 0 } ^ { 2 } f ( x ) d x$$
OCR C3 Q6
8 marks Standard +0.8
6. (i) Express \(3 \cos x ^ { \circ } + \sin x ^ { \circ }\) in the form \(R \cos ( x - \alpha ) ^ { \circ }\) where \(R > 0\) and \(0 < \alpha < 90\).
(ii) Using your answer to part (a), or otherwise, solve the equation $$6 \cos ^ { 2 } x ^ { \circ } + \sin 2 x ^ { \circ } = 0$$ for \(x\) in the interval \(0 \leq x \leq 360\), giving your answers to 1 decimal place where appropriate.
OCR C3 Q6
10 marks Standard +0.3
6. (i) Express \(\sqrt { 3 } \sin \theta + \cos \theta\) in the form \(R \sin ( \theta + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
(ii) State the maximum value of \(\sqrt { 3 } \sin \theta + \cos \theta\) and the smallest positive value of \(\theta\) for which this maximum value occurs.
(iii) Solve the equation $$\sqrt { 3 } \sin \theta + \cos \theta + \sqrt { 3 } = 0$$ for \(\theta\) in the interval \(- \pi \leq \theta \leq \pi\), giving your answers in terms of \(\pi\).
OCR C3 2007 January Q5
8 marks Moderate -0.3
5
  1. Express \(4 \cos \theta - \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence solve the equation \(4 \cos \theta - \sin \theta = 2\), giving all solutions for which \(- 180 ^ { \circ } < \theta < 180 ^ { \circ }\).
OCR C3 2005 June Q5
8 marks Standard +0.3
5
  1. Express \(3 \sin \theta + 2 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence solve the equation \(3 \sin \theta + 2 \cos \theta = \frac { 7 } { 2 }\), giving all solutions for which \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
OCR MEI C4 2008 January Q1
7 marks Moderate -0.3
1 Express \(3 \cos \theta + 4 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
Hence solve the equation \(3 \cos \theta + 4 \sin \theta = 2\) for \(- \pi \leqslant \theta \leqslant \pi\).
OCR MEI C4 2007 June Q1
7 marks Moderate -0.3
1 Express \(\sin \theta - 3 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants to be determined, and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Hence solve the equation \(\sin \theta - 3 \cos \theta = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C4 Q6
6 marks Standard +0.2
6 The function \(\mathrm { f } ( \theta ) = 3 \sin \theta + 4 \cos \theta\) is to be expressed in the form \(r \sin ( \theta + \alpha )\) where \(r > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  1. Find the values of \(r\) and \(\alpha\).
  2. Write down the maximum and minimum value of \(\mathrm { f } ( \theta )\).
  3. Solve the equation \(\mathrm { f } ( \theta ) = 1\) for \(0 ^ { \circ } \leq \theta \leq 180 ^ { \circ }\).
OCR C4 Q2
7 marks Standard +0.3
2 Express \(4 \cos \theta - \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < { } _ { 2 } ^ { 1 } \pi\).-
Hence solve the equation \(4 \cos \theta - \sin \theta = 3\), for \(0 \leqslant \theta \leqslant 2 \pi\).
OCR C4 Q6
7 marks Standard +0.3
6 Express \(\sin \theta - 3 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants to be determined, and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Hence solve the equation \(\sin \theta - 3 \cos \theta = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C4 Q2
7 marks Moderate -0.3
2 Express \(3 \cos \theta + 4 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { - \pi } { 2 }\).
Hence solve the equation \(3 \cos \theta + 4 \sin \theta = 2\) for \(\quad - \pi \leqslant \theta \leqslant \pi\).
OCR MEI C4 Q5
7 marks Standard +0.3
5 Express \(4 \cos \theta - \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
Hence solve the equation \(4 \cos \theta - \sin \theta = 3\), for \(0 \leqslant \theta \leqslant 2 \pi\).
OCR MEI C4 Q3
7 marks Standard +0.3
3 Express \(\sin \theta - 3 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants to be determined, and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Hence solve the equation \(\sin \theta - 3 \cos \theta = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{54a69773-651f-4e2f-9a3c-06ea7c07098b-4_606_624_236_754} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} In a theme park ride, a capsule C moves in a vertical plane (see Fig. 8). With respect to the axes shown, the path of C is modelled by the parametric equations $$x = 10 \cos \theta + 5 \cos 2 \theta , \quad y = 10 \sin \theta + 5 \sin 2 \theta , \quad ( 0 \leqslant \theta < 2 \pi )$$ where \(x\) and \(y\) are in metres.
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { \cos \theta + \cos 2 \theta } { \sin \theta + \sin 2 \theta }\). Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(\theta = \frac { 1 } { 3 } \pi\). Hence find the exact coordinates of the highest point A on the path of C .
  2. Express \(x ^ { 2 } + y ^ { 2 }\) in terms of \(\theta\). Hence show that $$x ^ { 2 } + y ^ { 2 } = 125 + 100 \cos \theta$$
  3. Using this result, or otherwise, find the greatest and least distances of C from O . You are given that, at the point B on the path vertically above O , $$2 \cos ^ { 2 } \theta + 2 \cos \theta - 1 = 0$$
  4. Using this result, and the result in part (ii), find the distance OB. Give your answer to 3 significant figures.
CAIE P3 2020 Specimen Q7
9 marks Standard +0.3
7
  1. By first d g co \(\left( x + \Omega ^ { \circ } \right)\), ev ess co \(\left( x + \Omega ^ { \circ } \right) - \sqrt { 2 } \sin x\) in th fo \(\mathrm { m } R \mathrm { co } ( x + \alpha )\), wh re \(R > 0\) ad \(0 ^ { \circ } < \alpha < \theta { } ^ { \circ }\). Gie th le \(6 R\) co rect to 4 sig fican fig res ad th le \(6 \alpha\) co rect tod cimal p aces. [ $\$$
  2. Hen e sb th teq tin $$\text { CB } \left( x + 3 ^ { \circ } \right) - \sqrt { 2 } \sin x = 2$$ fo \(0 ^ { \circ } < x < \boldsymbol { \theta }\)
OCR C3 2011 January Q4
7 marks Standard +0.3
4
  1. Express \(24 \sin \theta + 7 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence solve the equation \(24 \sin \theta + 7 \cos \theta = 12\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
OCR C3 2012 June Q8
11 marks Standard +0.3
8
  1. Express \(3 \sin \theta + 4 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence
    (a) solve the equation \(3 \sin \theta + 4 \cos \theta + 1 = 0\), giving all solutions for which \(- 180 ^ { \circ } < \theta < 180 ^ { \circ }\),
    (b) find the values of the positive constants \(k\) and \(c\) such that $$- 37 \leqslant k ( 3 \sin \theta + 4 \cos \theta ) + c \leqslant 43$$ for all values of \(\theta\).
OCR C3 2015 June Q6
10 marks Standard +0.3
6 \includegraphics[max width=\textwidth, alt={}, center]{00a4be37-c095-4d9c-a1cd-d03b8ab1d411-3_553_579_274_726} The diagram shows the curve \(y = 8 \sin ^ { - 1 } \left( x - \frac { 3 } { 2 } \right)\). The end-points \(A\) and \(B\) of the curve have coordinates ( \(a , - 4 \pi\) ) and ( \(b , 4 \pi\) ) respectively.
  1. State the values of \(a\) and \(b\).
  2. It is required to find the root of the equation \(8 \sin ^ { - 1 } \left( x - \frac { 3 } { 2 } \right) = x\).
    (a) Show by calculation that the root lies between 1.7 and 1.8.
    (b) In order to find the root, the iterative formula $$x _ { n + 1 } = p + \sin \left( q x _ { n } \right) ,$$ with a suitable starting value, is to be used. Determine the values of the constants \(p\) and \(q\) and hence find the root correct to 4 significant figures. Show the result of each step of the iteration process.
OCR MEI C4 2009 June Q1
7 marks Moderate -0.3
1 Express \(4 \cos \theta - \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
Hence solve the equation \(4 \cos \theta - \sin \theta = 3\), for \(0 \leqslant \theta \leqslant 2 \pi\).
OCR H240/03 2023 June Q2
5 marks Standard +0.3
2
  1. Express \(3 \sin x - 4 \cos x\) in the form \(R \sin ( x - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the value of \(\alpha\) correct to \(\mathbf { 4 }\) significant figures.
  2. Hence solve the equation \(3 \sin x - 4 \cos x = 2\) for \(0 ^ { \circ } < x < 90 ^ { \circ }\), giving your answer correct to 3 significant figures.
Edexcel PMT Mocks Q7
9 marks Standard +0.3
  1. (i) Solve \(0 \leq \theta \leq 180 ^ { 0 }\), the equation
$$4 \cos \theta = \sqrt { 3 } \operatorname { cosec } \theta$$ (ii) Solve, for \(0 \leq x \leq 2 \pi\), the equation $$\cos x - \sqrt { 3 } \sin x = \sqrt { 3 }$$
Edexcel Paper 2 2018 June Q7
9 marks Standard +0.8
  1. (i) Solve, for \(0 \leqslant x < \frac { \pi } { 2 }\), the equation
$$4 \sin x = \sec x$$ (ii) Solve, for \(0 \leqslant \theta < 360 ^ { \circ }\), the equation $$5 \sin \theta - 5 \cos \theta = 2$$ giving your answers to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
OCR MEI Paper 3 2024 June Q8
8 marks Standard +0.3
8 In this question you must show detailed reasoning.
  1. Express \(\cos x + \sqrt { 3 } \sin x\) in the form \(\mathrm { R } \sin ( \mathrm { x } + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\). Give the values of \(R\) and \(\alpha\) in exact form.
  2. Hence solve the equation \(\cos x = \sqrt { 3 } ( 1 - \sin x )\) for values of \(x\) in the interval \(- \pi \leqslant x \leqslant \pi\). Give the roots of this equation in exact form.