CAIE P2 2019 November — Question 8

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2019
SessionNovember
TopicHarmonic Form

8
  1. Express \(0.5 \cos \theta - 1.2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation \(0.5 \cos \theta - 1.2 \sin \theta = 0.8\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
  3. Determine the greatest and least possible values of \(( 3 - \cos \theta + 2.4 \sin \theta ) ^ { 2 }\) as \(\theta\) varies.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.