Edexcel P2 2018 Specimen — Question 9

Exam BoardEdexcel
ModuleP2 (Pure Mathematics 2)
Year2018
SessionSpecimen
TopicHarmonic Form

9. (i) Solve, for \(0 \leqslant \theta < \pi\), the equation $$\sin 3 \theta - \sqrt { 3 } \cos 3 \theta = 0$$ giving your answers in terms of \(\pi\)
(ii) Given that $$4 \sin ^ { 2 } x + \cos x = 4 - k , \quad 0 \leqslant k \leqslant 3$$
  1. find \(\cos x\) in terms of \(k\)
  2. When \(k = 3\), find the values of \(x\) in the range \(0 \leqslant x < 360 ^ { \circ }\)
    \includegraphics[max width=\textwidth, alt={}]{0aafa21b-25f4-4f36-b914-bbaf6cae7a66-30_2671_1942_107_121}