Edexcel C3 2009 June — Question 6

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2009
SessionJune
TopicHarmonic Form

  1. (a) Use the identity \(\cos ( A + B ) = \cos A \cos B - \sin A \sin B\), to show that
$$\cos 2 A = 1 - 2 \sin ^ { 2 } A$$ The curves \(C _ { 1 }\) and \(C _ { 2 }\) have equations $$\begin{aligned} & C _ { 1 } : \quad y = 3 \sin 2 x
& C _ { 2 } : \quad y = 4 \sin ^ { 2 } x - 2 \cos 2 x \end{aligned}$$ (b) Show that the \(x\)-coordinates of the points where \(C _ { 1 }\) and \(C _ { 2 }\) intersect satisfy the equation $$4 \cos 2 x + 3 \sin 2 x = 2$$ (c) Express \(4 \cos 2 x + 3 \sin 2 x\) in the form \(R \cos ( 2 x - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) to 2 decimal places.
(d) Hence find, for \(0 \leqslant x < 180 ^ { \circ }\), all the solutions of $$4 \cos 2 x + 3 \sin 2 x = 2$$ giving your answers to 1 decimal place.