Edexcel C3 2006 January — Question 6

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2006
SessionJanuary
TopicHarmonic Form

6. $$f ( x ) = 12 \cos x - 4 \sin x$$ Given that \(\mathrm { f } ( x ) = R \cos ( x + \alpha )\), where \(R \geqslant 0\) and \(0 \leqslant \alpha \leqslant 90 ^ { \circ }\),
  1. find the value of \(R\) and the value of \(\alpha\).
  2. Hence solve the equation $$12 \cos x - 4 \sin x = 7$$ for \(0 \leqslant x < 360 ^ { \circ }\), giving your answers to one decimal place.
    1. Write down the minimum value of \(12 \cos x - 4 \sin x\).
    2. Find, to 2 decimal places, the smallest positive value of \(x\) for which this minimum value occurs.
      \includegraphics[max width=\textwidth, alt={}, center]{5cd53af1-bac9-4ed9-ac45-59ad2e372423-09_60_35_2669_1853}