A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Harmonic Form
Q5
CAIE P3 2020 June — Question 5
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2020
Session
June
Topic
Harmonic Form
5
Express \(\sqrt { 2 } \cos x - \sqrt { 5 } \sin x\) in the form \(R \cos ( x + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the exact value of \(R\) and the value of \(\alpha\) correct to 3 decimal places.
Hence solve the equation \(\sqrt { 2 } \cos 2 \theta - \sqrt { 5 } \sin 2 \theta = 1\), for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10