CAIE
FP1
2012
November
Q6
9 marks
Challenging +1.8
6 Use de Moivre's theorem to show that
$$\cos 4 \theta = 8 \cos ^ { 4 } \theta - 8 \cos ^ { 2 } \theta + 1$$
Without using a calculator, verify that \(\cos 4 \theta = - \cos 3 \theta\) for each of the values \(\theta = \frac { 1 } { 7 } \pi , \frac { 3 } { 7 } \pi , \frac { 5 } { 7 } \pi , \pi\).
Using the result \(\cos 3 \theta = 4 \cos ^ { 3 } \theta - 3 \cos \theta\), show that the roots of the equation
$$8 c ^ { 4 } + 4 c ^ { 3 } - 8 c ^ { 2 } - 3 c + 1 = 0$$
are \(\cos \frac { 1 } { 7 } \pi , \cos \frac { 3 } { 7 } \pi , \cos \frac { 5 } { 7 } \pi , - 1\).
Deduce that \(\cos \frac { 1 } { 7 } \pi + \cos \frac { 3 } { 7 } \pi + \cos \frac { 5 } { 7 } \pi = \frac { 1 } { 2 }\).
OCR
Further Pure Core 1
2021
November
Q5
4 marks
Standard +0.8
5 Use de Moivre's theorem to find the constants \(A , B\) and \(C\) in the identity \(\sin ^ { 5 } \theta \equiv A \sin \theta + B \sin 3 \theta + C \sin 5 \theta\).
\(6 O\) is the origin of a coordinate system whose units are cm .
The points \(A , B , C\) and \(D\) have coordinates ( 1,0 ), ( 1,4 ), ( 6,9 ) and ( 0,9 ) respectively.
The arc \(B C\) is part of the curve with equation \(x ^ { 2 } + ( y - 10 ) ^ { 2 } = 37\).
The closed shape \(O A B C D\) is formed, in turn, from the line segments \(O A\) and \(A B\), the arc \(B C\) and the line segments \(C D\) and \(D O\) (see diagram).
A funnel can be modelled by rotating \(O A B C D\) by \(2 \pi\) radians about the \(y\)-axis.
\includegraphics[max width=\textwidth, alt={}, center]{58e9b480-f561-4a28-b911-7d9d6a80e976-3_641_1131_808_242}
Find the volume of the funnel according to the model.
WJEC
Further Unit 4
2022
June
Q9
12 marks
Standard +0.8
9. (a) (i) Expand \(\left( \cos \frac { \theta } { 3 } + i \sin \frac { \theta } { 3 } \right) ^ { 3 }\).
(ii) Hence, by using de Moivre's theorem, show that \(\cos \theta\) can be expressed as
$$4 \cos ^ { 3 } \frac { \theta } { 3 } - 3 \cos \frac { \theta } { 3 }$$
(b) Hence, or otherwise, find the general solution of the equation \(\frac { \cos \theta } { \cos \frac { \theta } { 3 } } = 1\).
WJEC
Further Unit 4
2023
June
Q3
9 marks
Standard +0.8
3. (a) Given that \(z = \cos \theta + \operatorname { isin } \theta\), use de Moivre's theorem to show that
$$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
(b) Express \(32 \cos ^ { 6 } \theta\) in the form \(a \cos 6 \theta + b \cos 4 \theta + c \cos 2 \theta + d\), where \(a , b , c , d\) are integers whose values are to be determined.